Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Immunology 2020-Jan

Anti-inflammatory effect of Acalypha australis L. via suppression of NF-κB signaling in LPS-stimulated RAW 264.7 macrophages and LPS-induced septic mice.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Hyo-Jung Kim
Hae-In Joe
Zhiyun Zhang
Sang Lee
Kyou-Young Lee
Yoon-Bum Kook
Hyo-Jin An

Palavras-chave

Resumo

We evaluated the anti-inflammatory activity of methanol extracts of Chinese medicinal plants from Beijing and determined which extract was the most effective. We found the methanol extract of Acalypha australis L. (AAL) to be the most effective. AAL has been used for clearing heat, toxic material, and hemostasia in Chinese medicine. Although these uses are closely related to inflammation, the anti-inflammatory effect of AAL has not yet been described and its underlying mechanism remains unclear. Therefore, we aimed to identify anti-inflammatory effect of AAL and its underlying mechanism in vitro and in vivo. In RAW 264.7 macrophages, cytotoxicity was evaluated by MTT assay and nitric oxide (NO) was measured with Griess reagent. To confirm the production of pro-inflammatory cytokines and its mRNA expression, enzyme immunoassay (EIA) and quantitative real-time PCR (qRT-PCR) were performed. Further, protein expression was analyzed by western blotting. Septic shock was induced by intraperitoneal injection of LPS (25 mg/kg) in mice. One hour before LPS injection, AAL (25 and 50 mg/kg) was administered orally. In LPS-stimulated macrophages, AAL inhibited NO production at concentrations without cytotoxicity. Additionally, AAL reduced not only inducible nitric oxide synthase (iNOS) expression but the production of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) by attenuating nuclear factor-kappa B (NF-κB)-related proteins (NF-κB p65, phosphorylation of inhibitor κB-α; p-IκB-α, phosphorylation of inhibitor κB kinase-α/β; p-Ikk-α/β). Moreover, AAL enhanced the survival rate of mice through the inhibition of iNOS expression and IL-6 and interleukin-1β (IL-1β) production in LPS-induced septic mice. Furthermore, AAL also reduced the expression of NF-κB-related proteins. These finding suggest that AAL is related to the modulation of inflammatory reactions by blocking NF-κB activation in LPS-stimulated RAW 264.7 macrophages and LPS-induced septic mice.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge