Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Environmental Management 2020-Aug

Coupling of non-point source pollution and soil characteristics covered by Phyllostachys edulis stands in hilly water source area

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Shiyong Sun
Jianfeng Zhang
Chunju Cai
Zeyu Cai
Xiaogang Li
Rongjia Wang

Palavras-chave

Resumo

The non-point source pollution of drinking water source areas is a global issue which is mainly caused by unreasonable management of the commercial forests growing in the upstream areas. However the occurrence and specific mechanism of runoff pollution in these areas have not been approached. In order to clarify the factors influencing the non-point source pollution in the area, the test plot in Fushi Reservoir watershed covered by Phyllostachys edulis plantations with pure and modified stands was chosen, and the characteristics of soil chemical properties, enzyme activities and the coupling between soil factors and surface runoff of were initially analyzed, the relationship between soil factors and surface runoff pollutants was examined using redundancy analysis. The results showed that pH, soil nitrate reductase (S-NR) and catalase (S-CAT) were the key factors affecting the differentiation of water quality in surface runoff. The total nitrogen (TN) concentration in surface runoff was positively correlated with S-NR but negatively correlated with pH, TN and alkali-hydrolyzed nitrogen (AN) concentrations in soil. The total phosphorus (TP) concentration was negative correlation with soil pH and TP. In addition, the permanganate index (CODMn) concentration has positive correlation with urease (S-UE), acid phosphatase (S-ACP) and organic matter (SOM) in soil. These results suggest that soil enzyme activities are more sensitive than soil nutrient status, and could be used as indicators of non-point source pollution assessing. Moreover, pollution in this area could be effectively controlled by enhancing vegetation coverage and ameliorating soil environment.

Keywords: Non-point source pollution; Phyllostachys edulis stand; Soil characteristics; Soil enzyme activity; Water source area.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge