Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
JOR Spine 2020-May

Hypoxic stress enhances extension and branching of dorsal root ganglion neuronal outgrowth

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Junxuan
Despina Stefanoska
Laura Stone
Maria Hildebrand
Corrinus van Donkelaar
Xuenong Zou
Valentina Basoli
Sibylle Grad
Mauro Alini
Marianna Peroglio

Palavras-chave

Resumo

It has been shown that painful intervertebral discs (IVDs) were associated with a deeper innervation. However, the effect of the disc's degenerative microenvironment on neuronal outgrowth remains largely unknown. The focus of this study was to determine the influence of hypoxia on dorsal root ganglion (DRG) neurite outgrowth. Toward this aim, the DRG-derived cell line ND7/23 was either directly subjected to 2% or 20% oxygen conditions or exposed to conditioned medium (CM) collected from IVDs cultured under 2% or 20% oxygen. Viability and outgrowth analysis were performed following 3 days of exposure. Results obtained with the cell line were further validated on cultures of rabbit spinal DRG explants and dissociated DRG neurons. Results showed that hypoxia significantly increased neurite outgrowth length in ND7/23 cells, which was also validated in DRG explant and primary cell culture, although hypoxia conditioned IVD did not significantly increase ND7/23 neurite outgrowth. While hypoxia dramatically decreased the outgrowth frequency in explant cultures, it significantly increased collateral sprouting of dissociated neurons. Importantly, the hypoxia-induced decrease of outgrowth frequency at the explant level was not due to inhibition of outgrowth branching but rather to neuronal necrosis. In summary, hypoxia in DRG promoted neurite sprouting, while neuronal necrosis may reduce the density of neuronal outgrowth at the tissue level. These findings may help to explain the deeper neo-innervation found in the painful disc tissue.

Highlights: Hypoxia promoted elongation and branching of neurite outgrowth at single cell level, but reduced outgrowth density at tissue level, possibly due to hypoxia-induced neuronal necrosis; these findings may help to explain the deeper neo-innervation found in clinically painful tissues.

Keywords: cell viability; dorsal root ganglion; hypoxia; low back pain; neuronal outgrowth.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge