Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Obesity 2020-Aug

Mechanisms of Artemisia scoparia's Anti-Inflammatory Activity in Cultured Adipocytes, Macrophages, and Pancreatic β-Cells

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Anik Boudreau
Susan Burke
J Collier
Allison Richard
David Ribnicky
Jacqueline Stephens

Palavras-chave

Resumo

Objective: An ethanolic extract of Artemisia scoparia (SCO) improves adipose tissue function and reduces negative metabolic consequences of high-fat feeding. A. scoparia has a long history of medicinal use across Asia and has anti-inflammatory effects in various cell types and disease models. The objective of the current study was to investigate SCO's effects on inflammation in cells relevant to metabolic health.

Methods: Inflammatory responses were assayed in cultured adipocytes, macrophages, and insulinoma cells by quantitative polymerase chain reaction, immunoblotting, and NF-κB reporter assays.

Results: In tumor necrosis factor α-treated adipocytes, SCO mitigated ERK and NF-κB signaling as well as transcriptional responses but had no effect on fatty acid-binding protein 4 secretion. SCO also reduced levels of deleted in breast cancer 1 protein in adipocytes and inhibited inflammatory gene expression in stimulated macrophages. Finally, in pancreatic β-cells, SCO decreased NF-κB-responsive promoter activity induced by IL-1β treatment.

Conclusions: SCO's ability to promote adipocyte development and function is thought to mediate its insulin-sensitizing actions in vivo. Our findings that SCO inhibits inflammatory responses through at least two distinct signaling pathways (ERK and NF-κB) in three cell types known to contribute to metabolic disease reveal that SCO may act more broadly than previously thought to improve metabolic health.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge