Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Inflammation 2020-Feb

N-Acetylcysteine Attenuates Lipopolysaccharide-Induced Osteolysis by Restoring Bone Remodeling Balance via Reduction of Reactive Oxygen Species Formation During Osteoclastogenesis.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Guangqi Yan
Yan Guo
Jingwen Guo
Qiang Wang
Chunyu Wang
Xue Wang

Palavras-chave

Resumo

Chronic inflammatory diseases affect bone and teeth health tremendously. Characterized by osteolytic lesion and hyperactive osteoclastogenesis, inflammatory bone diseases are short of effective therapeutics and therefore highlight the importance of understanding pathogenesis and developing ideal medications. Reactive oxygen species (ROS) play a prominent role in the innate immune response of activated macrophages, as well as in the physiological signaling of osteoclasts (OCs) differentiation. N-acetylcysteine (NAC) is a potent ROS scavenger and a potential option for treating diseases characterized by excessive ROS generation. However, whether NAC can protect physiological bone remodeling from in vivo inflammatory conditions is largely undefined. We applied NAC treatment on lipopolysaccharide (LPS)-induced inflammatory osteolysis mice model and found that NAC could attenuate bone erosion and protect mice against LPS-induced osteolysis, due to the suppressive effect on osteoclastogenesis and stimulated effect on osteogenesis. Moreover, in vitro study demonstrated that, in OC precursors (pre-OCs), LPS-stimulated expressions of OC marker genes, such as tartrate-resistant acid phosphatase type 5 (Acp5), cathepsin K (Ctsk), OC stimulatory transmembrane protein (Oc-stamp), dendritic cell-specific transmembrane protein (Dc-stamp), and nuclear factor of activated T cells 1 (NFATc1), were all reduced because of the NAC pretreatment, thereby adversely affecting OC function including F-actin ring formation and bone resorption. Further mechanism study showed that NAC blocked LPS-induced ROS formation in both macrophages and pre-OCs, cutting off the LPS-stimulated autocrine/paracrine mechanism during inflammatory osteolysis. Our findings reveal that NAC attenuates inflammatory osteolysis via the elimination of ROS formation during LPS-stimulated osteoclastogenesis, and provide a potential therapeutic approach to treat inflammatory bone disease.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge