Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Pharmacology and Experimental Therapeutics 2008-Nov

sigma-1 receptor modulation of acid-sensing ion channel a (ASIC1a) and ASIC1a-induced Ca2+ influx in rat cortical neurons.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Yelenis Herrera
Christopher Katnik
Jael D Rodriguez
Aaron A Hall
Alison Willing
Keith R Pennypacker
Javier Cuevas

Palavras-chave

Resumo

Acid-sensing ion channels (ASICs) are proton-gated cation channels found in peripheral and central nervous system neurons. The ASIC1a subtype, which has high Ca2+ permeability, is activated by ischemia-induced acidosis and contributes to the neuronal loss that accompanies ischemic stroke. Our laboratory has shown that activation of sigma receptors depresses ion channel activity and [Ca2+](i) dysregulation during ischemia, which enhances neuronal survival. Whole-cell patch-clamp electrophysiology and fluorometric Ca2+ imaging were used to determine whether sigma receptors regulate the function of ASIC in cultured rat cortical neurons. Bath application of the selective ASIC1a blocker, psalmotoxin1, decreased proton-evoked [Ca2+](i) transients and peak membrane currents, suggesting the presence of homomeric ASIC1a channels. The pan-selective sigma-1/sigma-2 receptor agonists, 1,3-di-o-tolyl-guanidine (100 microM) and opipramol (10 microM), reversibly decreased acid-induced elevations in [Ca2+](i) and membrane currents. Pharmacological experiments using sigma receptor-subtype-specific agonists demonstrated that sigma-1, but not sigma-2, receptors inhibit ASIC1a-induced Ca2+ elevations. These results were confirmed using the irreversible sigma receptor antagonist metaphit (50 microM) and the selective sigma-1 antagonist BD1063 (10 nM), which obtunded the inhibitory effects of the sigma-1 agonist, carbetapentane. Activation of ASIC1a was shown to stimulate downstream Ca2+ influx pathways, specifically N-methyl-D-aspartate and (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid/kainate receptors and voltage-gated Ca2+ channels. These subsequent Ca2+ influxes were also inhibited upon activation of sigma-1 receptors. These findings demonstrate that sigma-1 receptor stimulation inhibits ASIC1a-mediated membrane currents and consequent intracellular Ca2+ accumulation. The ability to control ionic imbalances and Ca2+ dysregulation evoked by ASIC1a activation makes sigma receptors an attractive target for ischemic stroke therapy.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge