Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Materials 2020-Jun

Surface Treatments with Dichloromethane to Eliminate Printing Lines on Polycarbonate Components Printed by Fused Deposition Modelling Technology

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Jorge Suárez-Macías
Juan Terrones-Saeta
Francisco Iglesias-Godino
Francisco Corpas-Iglesias

Palavras-chave

Resumo

Additive manufacturing, framed within the Industry 4.0. concept, is one of the processes that has witnessed greater development in the last years. Within this subject fused deposition modelling (FDM) printing technology is mainly dedicated to polymers and capable of providing components or elements of sufficient quality for different sectors. However, due to the process there can be a series of surface irregularities, which although they do not affect the required dimensional tolerances, they can cause problems in the useful life of the printed object in its interactions with the environment, as well as poor aesthetic qualities. Based on the above, this paper presents a series of chemical surface treatments capable of providing a surface that avoids undesired printing lines. For this purpose, fast, economical and environmentally sustainable treatments are used that obviously do not deteriorate the structure of the component or degrade the material surface. A complete study is therefore presented in which the different variables of the process are evaluated, as well as those of the printing technology, such as the layer height, coating, infill density, etc. The development of this project achieves a field of application of the detailed chemical treatment to obtain smooth surfaces, without degradation of the final part and with the appropriate dimensional tolerances.

Keywords: 3D printing; additive manufacturing; fused deposition modeling; polycarbonate; surface treatments.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge