Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

allyl isothiocyanate/arabidopsis

O link é salvo na área de transferência
ArtigosTestes clínicosPatentes
10 resultados

Allyl Isothiocyanate Inhibits Actin-Dependent Intracellular Transport in Arabidopsis thaliana.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Volatile allyl isothiocyanate (AITC) derives from the biodegradation of the glucosinolate sinigrin and has been associated with growth inhibition in several plants, including the model plant Arabidopsis thaliana. However, the underlying cellular mechanisms of this feature remain scarcely
Isothiocyanates (ITCs) are degradation products of the plant secondary metabolites glucosinolates (GSLs) and are known to affect human health as well as plant herbivores and pathogens. To investigate the processes engaged in plants upon exposure to isothiocyanate we performed a genome scale
Upon tissue damage the plant secondary metabolites glucosinolates can generate various hydrolysis products, including isothiocyanates (ITCs). Their role in plant defence against insects and pest and their potential health benefits have been well documented, but our knowledge regarding the endogenous
SUMMARY Alternaria brassicicola is the causative agent of black spot disease of Brassicaceae belonging to the genera Brassica and Raphanus. During host infection, A. brassicicola is exposed to high levels of antimicrobial defence compounds such as indolic phytoalexins and glucosinolate breakdown

Allyl isothiocyanate induces stomatal closure in Vicia faba.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Isothiocyanates are enzymatically produced from glucosinolates in plants, and allyl isothiocyanate (AITC) induces stomatal closure in Arabidopsis thaliana. In this study, we investigated stomatal responses to AITC in Vicia faba. AITC-induced stomatal closure accompanied by reactive oxygen species
Allyl isothiocyanate (AITC) is a phytochemical associated with plant defense in plants from the Brassicaceae family. AITC has long been recognized as a countermeasure against external threats, but recent reports suggest that AITC is also involved in the onset of defense-related mechanisms such as

Allyl isothiocyanate affects the cell cycle of Arabidopsis thaliana.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Isothiocyanates (ITCs) are degradation products of glucosinolates present in members of the Brassicaceae family acting as herbivore repellents and antimicrobial compounds. Recent results indicate that allyl ITC (AITC) has a role in defense responses such as glutathione depletion, ROS generation and

Allyl isothiocyanate (AITC) induces stomatal closure in Arabidopsis.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Isothiocyanates (ITCs) are degradation products of glucosinolates in crucifer plants and have repellent effect on insects, pathogens and herbivores. In this study, we report that exogenously applied allyl isothiocyanate (AITC) induced stomatal closure in Arabidopsis via production of reactive oxygen

Identification and Characterization of Three Epithiospecifier Protein Isoforms in Brassica oleracea.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Glucosinolates present in Brassicaceae play a major role in herbivory defense. Upon tissue disruption, glucosinolates come into contact with myrosinase, which initiates their breakdown to biologically active compounds. Among these, the formation of epithionitriles is triggered by the presence
Isothiocyanates, nitriles, and thiocyanates are degradation products of glucosinolates in crucifer plants. In this study, we investigated the stomatal response to allyl isothiocyanate (AITC), 3-butenenitrile (3BN), and ethyl thiocyanate (ESCN) in Arabidopsis. AITC, 3BN, and ESCN induced stomatal
Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge