Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

betaine/nicotiana

O link é salvo na área de transferência
ArtigosTestes clínicosPatentes
Página 1 a partir de 19 resultados

Isolation and characterization of a salt stress-responsive betaine aldehyde dehydrogenase in Lycium ruthenicum Murr.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
As compatible solute, glycine betaine (GB) plays a significant role in salinity tolerance in GB accumulating plants. Solanaceous crops such as tomato (Solanum lycopersicum) and tobacco (Nicotiana tabacum) are salt sensitive and naturally GB non-accumulators. In Solanaceae, only the Lycium genus has
In several organisms osmotic stress tolerance is mediated by the accumulation of the osmoprotective compound glycine betaine. With the ambition to transfer the betaine biosynthetic pathway into plants not capable of synthesizing this osmoprotectant, the Escherichia coli gene betB encoding the second
Glycine betaine (GB) can enhance heat tolerance and the accumulation of heat-shock protein (HSP) in plants, but the effects of GB on HSP accumulation during salt stress were not previously known. To investigate the mechanism of how GB influences the expression of HSP, wild-type tobacco (Nicotiana
Certain higher plants synthesize and accumulate glycine betaine, a compound with osmoprotectant properties. Biosynthesis of glycine betaine proceeds via the pathway choline-->betaine aldehyde-->glycine betaine. Plants such as tobacco (Nicotiana tabacum L.) which do not accumulate glycine betaine
Members of the Chenopodiaceae can accumulate high levels (>100 μmol·(g DW)(-1)) of glycine betaine (betaine) in leaves when salinized. Chenopodiaceae synthesize betaine by a two-step oxidation of choline (choline→betaine aldehyde→ betaine), with the second step catalyzed by betaine aldehyde
In Escherichia coli the osmoprotective compound glycine betaine is produced from choline by two enzymes; choline dehydrogenase (CDH) oxidizes choline to betaine aldehyde and then further on to glycine betaine, while betaine aldehyde dehydrogenase (BADH) facilitates the conversion of betaine aldehyde
Glycine betaine (GlyBet), a quaternary ammonium compound, functions as an osmoprotectant in many organisms including plants. Previous research has shown that over-expression of enzymes for GlyBet biosynthesis in transgenic plants improved abiotic stress tolerance, but so far no study on the effects

Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Glycine betaine is an osmoprotectant found in many organisms, including bacteria and higher plants. The bacterium Escherichia coli produces glycine betaine by a two-step pathway where choline dehydrogenase (CDH), encoded by betA, oxidizes choline to betaine aldehyde which is further oxidized to

Metabolic modeling identifies key constraints on an engineered glycine betaine synthesis pathway in tobacco.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Previous work has shown that tobacco (Nicotiana tabacum) plants engineered to express spinach choline monooxygenase in the chloroplast accumulate very little glycine betaine (GlyBet) unless supplied with choline (Cho). We therefore used metabolic modeling in conjunction with [(14)C]Cho labeling

Maintaining methylation activities during salt stress. The involvement of adenosine kinase.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Synthesis of the compatible osmolyte Gly betaine is increased in salt-stressed spinach (Spinacia oleracea). Gly betaine arises by oxidation of choline from phosphocholine. Phosphocholine is synthesized in the cytosol by three successive S-adenosyl-Met-dependent N-methylations of phosphoethanolamine.
Glycinebetaine (GB) is an osmoprotectant accumulated by certain plants in response to high salinity, drought, and cold stress. Plants synthesize GB via the pathway choline --> betaine aldehyde --> glycinebetaine, and the first step is catalyzed by choline monooxygenase (CMO). In the present study,
Among flowering plants, the synthesis of choline (Cho) from ethanolamine (EA) can potentially occur via three parallel, interconnected pathways involving methylation of free bases, phospho-bases, or phosphatidyl-bases. We investigated which pathways operate in tobacco (Nicotiana tabacum L.) because

Functional analysis of BADH gene promoter from Suaeda liaotungensis K.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
A 1,993 bp region upstream of the gene encoding the betaine aldehyde dehydrogenase (BADH) was isolated from Suaeda liaotungensis K., and the analysis of the promoter sequence has revealed the existence of several putative cis-elements by the PLACE database. In this study, according to the
Genetically engineered tobacco (Nicotiana tabacum) with the ability to synthesis glycinebetaine was established by introducing the BADH gene for betaine aldehyde dehydrogenase from spinach (Spinacia oleracea). The genetic engineering enabled the plants to accumulate glycinebetaine mainly in

Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Citrus ( Citrus unshiu Marcov.) dehydrin in response to chilling stress was overexpressed in tobacco ( Nicotiana tabacum L.), and the cold stress tolerance of transgenics at low temperature was analyzed. The freezing at -4 degrees C for 3 h of 24 independent lines indicated that a phenotype
Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge