Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

cleidocranial dysplasia/alkaline phosphatase

O link é salvo na área de transferência
ArtigosTestes clínicosPatentes
Página 1 a partir de 16 resultados

Neonatal lethal osteochondrodysplasia with low serum levels of alkaline phosphatase and osteocalcin.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Neonatal lethal skeletal dysplasias are rare and typically involve thoracic malformations and severe limb shortening. We report on a newborn boy manifesting an osteochondrodysplasia associated with fatal respiratory insufficiency who had normal lung volumes and extremity lengths. His disorder

Abnormal differentiation of dental pulp cells in cleidocranial dysplasia.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Cleidocranial dysplasia (CCD) is a skeletal dysplasia caused by heterozygous mutations of RUNX2, a gene that is essential for the mineralization of bone and tooth. We isolated primary dental pulp cells from a 10-y-old patient and tested their proliferative capacity, alkaline phosphatase activity,

A RUNX2/PEBP2alphaA/CBFA1 mutation in cleidocranial dysplasia revealing the link between the gene and Smad.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Cleidocranial dysplasia (CCD), an autosomal dominant human bone disease, is thought to be caused by heterozygous mutations in RUNX2/PEBP2alphaA/CBFA1. To understand the mechanism underlying the pathogenesis of CCD, we studied a novel mutant of RUNX2, namely CCDalphaA376, originally identified in a

[Immunohistochemical study on collagen I content in the gingiva in cleidocranial dysplasia].

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
BACKGROUND Patients with cleidocranial dysplasia (CCD) present a thickend and fibrotic gingiva. OBJECTIVE To the best of our knowledge it was analysed for the first time, whether this is correlated with an increased rate of collagen I in oral mucosa. METHODS 27 soft tissue biopsies of six

Cleidocranial dysplasia in a mother and her two children.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Cleidocranial dysplasia (CCD) is an autosomal dominant disease characterized by skeletal abnormalities which is secondary to haploinsufficiency of the transcription factor Runx2 that plays a role in osteoblast differentiation. In this report, we present a female patient who came to our Rheumatology

Severe cleidocranial dysplasia and hypophosphatasia in a child with microdeletion of the C-terminal region of RUNX2.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Cleidocranial dysplasia (CCD) is a rare autosomal dominant skeletal dysplasia due to mutations causing haploinsufficiency of RUNX2, an osteoblast transcription factor specific for bone and cartilage. The classic form of CCD is characterized by delayed closure of the fontanels, hypoplastic or

Cleidocranial dysplasia with decreased bone density and biochemical findings of hypophosphatasia.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Cleidocranial dysplasia (CCD; MIM 119600) is an autosomal dominant skeletal dysplasia characterised by hypoplastic clavicles, patent fontanelles, short stature, tooth anomalies and other variable skeletal changes. Different mutations of the RUNX2/CBFA1 gene (MIM 600211) have been detected in

Severe cleidocranial dysplasia can mimic hypophosphatasia.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Cleidocranial dysplasia (OMIM 119600) is a skeletal dysplasia caused by mutations in the bone/cartilage specific osteoblast transcription factor RUNX2 gene. It is characterised by macrocephaly with persistently open sutures, absent or hypoplastic clavicles, dental anomalies, and delayed ossification

Abnormal bone remodelling activity of dental follicle cells from a cleidocranial dysplasia patient.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
OBJECTIVE To explore the role of dental follicle cells (DFCs) with a novel cleidocranial dysplasia (CCD) causative gene RUNX2 mutation (DFCsRUNX2+/m ) in delayed permanent tooth eruption. METHODS A CCD patient with typical clinical features was involved in this study. DFCsRUNX2+/m were cultured and

Cementum analysis in cleidocranial dysostosis.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
OBJECTIVE Cleidocranial dysostosis (CCD) is a skeletal disorder associated with dental anomalies such as failure or delayed eruption of permanent teeth and multiple impacted supernumerary or permanent teeth. Absence of cellular cementum at the root apex is presumed to be one of the factors for

A novel RUNX2 mutation in exon 8, G462X, in a patient with Cleidocranial Dysplasia.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
To identify a novel mutation of Runx2 gene in Cleidocranial Dysplasia (CCD) patients and to characterize the functional consequences of this mutation. The subjects consisted of 12 Korean CCD patients. After oral epithelial cells were collected using a mouthwash technique, genomic DNA was extracted.

Delayed tooth movement in Runx2 +/- mice associated with mTORC2 in stretch-induced bone formation

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Runt-related transcription factor 2 (Runx2) is an essential transcription factor for osteoblast differentiation, and is activated by mechanical stress to promote osteoblast function. Cleidocranial dysplasia (CCD) is caused by mutations of RUNX2, and CCD patients exhibit malocclusion and often

RUNX2 mutation impairs osteogenic differentiation of dental follicle cells.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
OBJECTIVE Cleidocranial dysplasia (CCD), mainly caused by RUNX2 mutation, is a dominantly inherited skeletal disorder with many dental abnormalities, characterized by delayed permanent tooth eruption. In this study, we explored a novel RUNX2 mutation and the effect of RUNX2 mutation on osteogenic

Discovery: Osf2/Cbfa1, a master gene of bone formation.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
This report reviews the current research that has impacted on our understanding of osteogenesis. Recent studies indicate that the transcription factor Osf2 (osteoblast specific transcription factor 2)/Cbfa1 (core binding factor activity 1) serves as a Master Gene regulating osteoblast-specific gene
Runx2/CBFA1/AML3 is a master regulator of the osteoblast lineage and has been shown to directly control the transcription of numerous osteoblast-specific genes including alkaline phosphatase, osteopontin, and type I collagen. In its absence, ossification does not occur during development resulting
Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge