Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

craniosynostoses/tyrosine

O link é salvo na área de transferência
ArtigosTestes clínicosPatentes
Página 1 a partir de 42 resultados

Familial scaphocephaly syndrome caused by a novel mutation in the FGFR2 tyrosine kinase domain.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Saethre-Chotzen syndrome (SCS), associated with TWIST-1 mutations, is characterized by premature fusion of cranial sutures. TWIST-1 haploinsufficiency, leads to alterations in suture mesenchyme cellular gene expression patterns, resulting in aberrant osteogenesis and craniosynostosis. We analyzed
The development of the craniofacial skeleton is a spatial and temporal process where cranial sutures play a role in the regulation of morphogenesis and growth. Disruption of these cellular and molecular interactions may lead to craniosynostosis, the premature obliteration of one or more cranial

Characterization of the first FGFRL1 mutation identified in a craniosynostosis patient.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Fibroblast growth factor receptor-like 1 (FGFRL1) is a recently discovered transmembrane protein whose functions remain unclear. Since mutations in the related receptors FGFR1-3 cause skeletal malformations, DNA samples from 55 patients suffering from congenital skeletal malformations and 109
Craniosynostosis (CS) has a prevalence of approximately 1 in every 2000 live births and is characterized by the premature fusion of one or more cranial sutures. Failure to maintain the cell lineage boundary at the coronal suture is thought to be involved in the pathology of some forms of CS. The

Functional characterization of a novel FGFR2 mutation, E731K, in craniosynostosis.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Craniosynostosis is a condition in which some or all of the sutures in the skull of an infant close prematurely. Fibroblast growth factor receptor 2 (FGFR2) mutations are a well-known cause of craniosynostosis. Many syndromes that comprise craniosynostosis, such as Apert syndrome, Crouzon syndrome,
Craniosynostosis (CS) syndrome is an autosomal dominant condition (ADC) classically combining with CS and nonsyndromic CS (NSCS) including digital anomalies of the hands and feet. The majority of cases caused by a heterozygous mutation (HM) in the third immunoglobulin-like domain
Saethre-Chotzen syndrome (SCS) is an autosomal dominant craniosynostosis syndrome with variable expression. Here we report on a female infant with a de novo balanced translocation 46, XX, t(7;12)(p21.2;p12.3) and presenting at birth brachycephaly, antimongolic palpebral fissures, ocular

[From gene to disease; craniosynostosis syndromes due to FGFR2-mutation].

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
One of the genes involved in craniosynostosis syndromes is the fibroblast growth factor receptor 2 (FGFR2) gene, a tyrosine kinase receptor gene. Upon ligand binding the FGFR2 receptors dimerise, and this is followed by activation of the intracellular tyrosine kinase domains. This initiates a

Novel mutation in the tyrosine kinase domain of FGFR2 in a patient with Pfeiffer syndrome.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Mutations in the fibroblast growth factor receptor 2 (FGFR2) cause a variety of craniosynostosis syndromes. The mutational spectrum tends to be narrow with the majority of mutations occurring in either exon IIIa or IIIc or in the intronic sequence preceding exon IIIc. Mutations outside of this
It has been known for several years that heterozygous mutations of three members of the fibroblast growth-factor-receptor family of signal-transduction molecules-namely, FGFR1, FGFR2, and FGFR3-contribute significantly to disorders of bone patterning and growth. FGFR3 mutations, which predominantly
The causative relationship between several of the syndromic forms of craniosynostosis and mutations in the fibroblast growth factor receptor (FGFR) loci is now well established. However, within the group of patients with craniosynostosis, there are several families and sporadic cases whose clinical

Evidence that homozygous PTPRD gene microdeletion causes trigonocephaly, hearing loss, and intellectual disability.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
BACKGROUND The premature fusion of metopic sutures results in the clinical phenotype of trigonocephaly. An association of this characteristic with the monosomy 9p syndrome is well established and the receptor-type protein tyrosine phosphatase gene (PTPRD), located in the 9p24.1p23 region and

Syndromic craniosynostosis: from history to hydrogen bonds.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
The syndromic craniosynostoses, usually involving multiple sutures, are hereditary forms of craniosynostosis associated with extracranial phenotypes such as limb, cardiac, CNS and tracheal malformations. The genetic etiology of syndromic craniosynostosis in humans is only partially understood.
Tyrosine kinase inhibitors are being developed for therapy of malignancies caused by oncogenic FGFR signaling but little is known about their effect in congenital chondrodysplasias or craniosynostoses that associate with activating FGFR mutations. Here, we investigated the effects of novel FGFR
Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge