Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

cystathionine/batata

O link é salvo na área de transferência
ArtigosTestes clínicosPatentes
12 resultados
Cystathionine beta-lyase (CbL) catalyses the second step in higher-plant methionine biosynthesis. To further characterise the role of CbL in methionine biosynthesis, transgenic potato (Solanum tuberosum L.) plants were generated that express a potato cystathionine beta-lyase (StCbL; EC 4.4.1.8)

Transgenic potato plants reveal the indispensable role of cystathionine beta-lyase in plant growth and development.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Methionine (Met) is an essential amino acid that is often unavailable at sufficient dietary levels. In order to better understand Met pathway regulation, a cDNA encoding cystathionine beta-lyase (CbL; EC 4.4.1.8) has been cloned from Solanum tuberosum. An antisense construct of this gene was used to

Functional analysis of cystathionine gamma-synthase in genetically engineered potato plants.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
In plants, metabolic pathways leading to methionine (Met) and threonine diverge at the level of their common substrate, O-phosphohomoserine (OPHS). To investigate the regulation of this branch point, we engineered transgenic potato (Solanum tuberosum) plants affected in cystathionine gamma-synthase
Potatoes (Solanum tuberosum) are deficient in methionine, an essential amino acid in human and animal diets. Higher methionine levels increase the nutritional quality and promote the typically pleasant aroma associated with baked and fried potatoes. Several attempts have been made to elevate tuber
The availability of the carbon backbone O-phosphohomoserine (OPHS) is critical to methionine (met) and threonine (thr) synthesis. OPHS derives from homoserine and is formed by homoserine kinase (HSK). To clarify the function of HSK in cellular metabolism, the E. coli HSK ortholog thrB was expressed

The effects of enhanced methionine synthesis on amino acid and anthocyanin content of potato tubers.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
BACKGROUND Potato is a staple food in the diet of the world's population and also being used as animal feed. Compared to other crops, however, potato tubers are relatively poor in the essential amino acid, methionine. Our aim was to increase the methionine content of tubers by co-expressing a gene

Engineering of cysteine and methionine biosynthesis in potato.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Methionine and cysteine, two amino acids containing reduced sulfur, are not only an important substrate of protein biosynthesis but are also precursors of various other metabolites such as glutathione, phytochelatines, S-adenosylmethionine, ethylene, polyamines, biotin, and are involved as methyl
The essential amino acid methionine is a substrate for the synthesis of S-adenosyl-methionine (SAM), that donates its methyl group to numerous methylation reactions, and from which polyamines and ethylene are generated. To study the regulatory role of methionine synthesis in tomato fruit ripening,

Enhancement of the primary flavor compound methional in potato by increasing the level of soluble methionine.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
The primary flavor compound in potato, methional, is synthesized from methionine by the Strecker degradation reaction. A major problem associated with potato processing is the loss of methional. Methional or its precursor, methionine, is not added back during potato processing due to high costs of

Antisense inhibition of threonine synthase leads to high methionine content in transgenic potato plants.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Methionine (Met) and threonine (Thr) are members of the aspartate family of amino acids. In plants, their biosynthetic pathways diverge at the level of O-phosphohomo-serine (Ser). The enzymes cystathionine gamma-synthase and Thr synthase (TS) compete for the common substrate O-phosphohomo-Ser with

Homocysteine over-accumulation as the effect of potato leaves exposure to biotic stress.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Homocysteine (Hcy) is a naturally occurring intermediate metabolite formed during methionine metabolism. It has been well documented that its excess can be extremely toxic to mammalian, yeast and bacterial cells. In spite of the metabolic value of Hcy known for decades, the role of this amino acid

Pyrimethanil Sensitivity and Resistance Mechanisms in Penicillium digitatum

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Pyrimethanil is an anilinopyrimidines (AP) fungicide and highly effective in controlling green mold caused by Penicillium digitatum but has not yet been registered in China to control postharvest diseases of citrus. In the present study, baseline sensitivity of P. digitatum to pyrimethanil was
Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge