Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

hyperalgesia/cancro

O link é salvo na área de transferência
Página 1 a partir de 1079 resultados

Tumor-evoked hyperalgesia and sensitization of nociceptive dorsal horn neurons in a murine model of cancer pain.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Pain associated with cancer, particularly when tumors metastasize to bone, is often severe and debilitating. Better understanding of the neurobiological mechanisms underlying cancer pain will likely lead to the development of more effective treatments. The aim of this study was to characterize
Descending nociceptive modulation from the supraspinal structures plays an important role in cancer-induced bone pain (CIBP). Rostral ventromedial medulla (RVM) is a critical component of descending nociceptive facilitation circuitry, but so far the mechanisms are poorly known. In this study, we
Previous studies have demonstrated that tumor necrosis factor-alpha (TNF-α) in the red nucleus (RN) plays facilitated roles in the development of abnormal pain. Here, the roles of nuclear factor-kappa B (NF-κB), extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAPK)

The cannabinoid receptor agonist, WIN 55, 212-2, attenuates tumor-evoked hyperalgesia through peripheral mechanisms.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Several lines of evidence suggest that cannabinoids can attenuate various types of pain and hyperalgesia through peripheral mechanisms. The development of rodent cancer pain models has provided the opportunity to investigate novel approaches to treat this common form of pain. In the present study,

Increased anandamide uptake by sensory neurons contributes to hyperalgesia in a model of cancer pain.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Opioids do not effectively manage pain in many patients with advanced cancer. Because anandamide (AEA) activation of cannabinoid type-1 receptors (CB1R) on nociceptors reduces nociception, manipulation of AEA metabolism in the periphery may be an effective alternative or adjuvant therapy in the
Pain associated with cancer and chronic musculoskeletal disorders can be difficult to control. We used murine models of cancer and inflammatory muscle pain to examine whether the cannabinoid receptor agonist WIN55,212-2 reduces hyperalgesia originating in deep tissues. C3H/He mice were anesthetized

Evaluation of heat hyperalgesia and anxiety like-behaviors in a rat model of orofacial cancer.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Pain and anxiety are commonly experienced by cancer patients and both significantly impair their quality of life. Some authors claim that there is a relationship between pain and anxiety, while others suggest that there is not a direct association. In any case, there is indeed a consensus that
It has previously been suggested that the upregulation of GluN2B-containing N-methyl D-aspartate receptors (GluN2B) within the rostral anterior cingulate cortex (rACC) may contribute to the development of chronic pain. The present study used a rat model of bone cancer pain in order to investigate

Pain management with intrathecal clonidine in a colon cancer patient with opioid hyperalgesia: case presentation.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Hyperalgesia is normally an increase in the response to a painful stimulant. Opioid-induced hyperalgesia (OIH) is a situation frequently encountered in algology clinics. Its treatment is complicated and problematic and often requires alternative methods. A 40-year-old male patient 45 kg weighing had
Previous studies have demonstrated that sigma-1 receptor plays important roles in the induction phase of rodent neuropathic pain; however, whether it is involved in bone cancer pain (BCP) and the underlying mechanisms remain elusive. The aim of this study was to examine the potential role of the
In this paper we compare two innovative models of movement-related pain: tumor-induced nociception following implantation of fibrosarcoma cells into bone and muscle inflammation-induced nociception following injection of the irritant carrageenan into muscle. Importantly, using the grip force test,

SAP102 contributes to hyperalgesia formation in the cancer induced bone pain rat model by anchoring NMDA receptors.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
The pathogenesis of cancer induced bone pain (CIBP) is extremely complex, and glutamate receptor dysfunction plays an important role in the formation of CIBP. Synapse-associated protein 102 (SAP102) anchors glutamate receptors in the postsynaptic membrane. However, its effect on hyperalgesia
Opioids are the cornerstone of palliative pain management. Opioids work on the mu-opioid receptor as an agonist for the treatment of pain. Repeated exposure to opioids over time can lead to undesired desensitization of the antinociceptive receptor while sensitizing the N-methyl-D-aspartate (NMDA)
Recently, our group established a relationship between tumor-induced spinal cord astrocyte activation and aromatase expression and the development of bone tumor nociception in male mice. As an extension of this work, we now report on the association of tumor-induced mechanical hyperalgesia and cold
The pain peptide adrenomedullin (AM) plays a pivotal role in pathological pain. The present study was designed to investigate the effect of blockade of AM receptor on bone cancer pain (BCP) and its mechanism. BCP was developed by inoculation of Walker 256 mammary gland carcinoma cells in the tibia
Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge