Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

isoleucine/arabidopsis thaliana

O link é salvo na área de transferência
ArtigosTestes clínicosPatentes
Página 1 a partir de 149 resultados

3-Hydroxyisobutyrate Dehydrogenase Is Involved in Both, Valine and Isoleucine Degradation in Arabidopsis thaliana.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
In plants, amino acid catabolism is especially relevant in metabolic stress situations (e.g. limited carbohydrate availability during extended darkness). Under these conditions, amino acids are used as alternative substrates for respiration. Complete oxidation of the branched-chain amino acids
Plants are capable to de novo synthesize the essential amino acids leucine, isoleucine and valine. Studies in recent years, however, also revealed that plants have the potential to degrade leucine or may be all of the branched-chain amino acids. One of the enzymes participating in both biosynthesis

GTR1 is a jasmonic acid and jasmonoyl-l-isoleucine transporter in Arabidopsis thaliana.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Jasmonates are major plant hormones involved in wounding responses. Systemic wounding responses are induced by an electrical signal derived from damaged leaves. After the signaling, jasmonic acid (JA) and jasmonoyl-l-isoleucine (JA-Ile) are translocated from wounded to undamaged leaves, but the
Oxylipins of the jasmonate family are active as signals in plant responses to biotic and abiotic stresses as well as in development. Jasmonic acid (JA), its precursor cis-12-oxo-phytodienoic acid (OPDA) and the isoleucine conjugate of JA (JA-Ile) are the most prominent members. OPDA and JA-Ile have
Plants rapidly perceive tissue damage, such as that inflicted by insects, and activate several key defense responses. The importance of the fatty acid-derived hormone jasmonates (JA) in dictating these wound responses has been recognized for many years. However, important features pertaining to the
Jasmonoyl-isoleucine (JA-Ile) is a phytohormone that orchestrates plant defenses in response to wounding, feeding insects, or necrotrophic pathogens. JA-Ile metabolism has been studied intensively, but its catabolism as a potentially important mechanism for the regulation of JA-Ile-mediated
Lipid peroxidation is one of the consequences of environmental stress in plants and leads to the accumulation of highly toxic, reactive aldehydes. One of the processes to detoxify these aldehydes is their oxidation into carboxylic acids catalyzed by NAD(P)+-dependent ALDHs (aldehyde dehydrogenases).
Abscisic acid (ABA) is one of the most important phytohormones in plant. PYL proteins were identified to be ABA receptors in Arabidopsis thaliana. Despite the remarkably high degree of sequence similarity, PYL1 and PYL2 exhibit distinct responses toward pyrabactin, an ABA agonist. PYL1 inhibits

Neomycin inhibition of (+)-7-iso-jasmonoyl-L-isoleucine accumulation and signaling.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
The majority of plant defenses against insect herbivores are coordinated by jasmonate (jasmonic acid, JA; (+)-7-iso-jasmonoyl-L-isoleucine, JA-Ile)-dependent signaling cascades. Insect feeding and mimicking herbivory by application of oral secretions (OS) from the insect induced both cytosolic
Arabidopsis thaliana threonine deaminase (TD) is a tetramer composed of identical approximately 59600 Da subunits. TD activity has been shown to be inhibited by isoleucine. This effect is reversed by a large excess of valine. Nondenaturant gel filtration, polyacrylamide gel electrophoresis, and mass
Acetohydroxyacid synthase (EC 4.1.3.18; AHAS) catalyzes the initial step in the formation of the branched-chain amino acids. The enzyme from most bacteria is composed of a catalytic subunit, and a smaller regulatory subunit that is required for full activity and for sensitivity to feedback

Molecular Basis of Imidazolinone Herbicide Resistance in Arabidopsis thaliana var Columbia.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Acetolactate synthase (ALS), the first enzyme in the biosynthetic pathway of leucine, isoleucine, and valine, is inhibited by imidazolinone herbicides. To understand the molecular basis of imidazolinone resistance, we isolated the ALS gene from an imazapyr-resistant mutant GH90 of Arabidopsis

Regulatory interactions in Arabidopsis thaliana acetohydroxyacid synthase.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Acetohydroxyacid synthase (AHAS; EC 4.1.3.18) contains catalytic and regulatory subunits, the latter being required for sensitivity to feedback regulation by leucine, valine and isoleucine. The regulatory subunit of Arabidopsis thaliana AHAS possesses a sequence repeat and we have suggested

ZnO nanoparticle effects on hormonal pools in Arabidopsis thaliana.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
At present, nanoparticles have been more and more used in a wide range of areas. However, very little is known about the mechanisms of their impact on plants, as both positive and negative effects have been reported. As plant interactions with the environment are mediated by plant hormones, complex
The aspartate-derived amino acid pathway in plants is an intensively studied metabolic pathway, because of the biosynthesis of the four essential amino acids lysine, threonine, isoleucine and methionine. The pathway is mainly controlled by the key regulatory enzymes aspartate kinase (AK; EC
Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge