Página 1 a partir de 50 resultados
In this study, a multifunctional poly(β-L-malic acid)-based nanoconjugate with a pH-dependent charge conversional characteristic was developed for tumor-specific drug delivery. The short branched polyethylenimine-modified poly(β-L-malic acid) (PEPM) was first synthesized. Then, the fragment HAb18
Tumor-specific targeting using achievements of nanotechnology is a mainstay of increasing efficacy of anti-tumor drugs. To improve drug targeting we covalently conjugated for the first time two different monoclonal antibodies, an anti-mouse transferrin receptor antibody and a mouse autoimmune
Design of an efficient site-specific drug delivery system based on degradable functional polymers still remains challenging. In this work, we synthesized and characterized three degradable functional polyesters belonging to the poly(malic acid) family: the poly(benzyl malate) (PMLABe), the
OBJECTIVE
Temozolomide (TMZ) is a pro-drug releasing a DNA alkylating agent that is the most effective drug to treat glial tumors when combined with radiation. TMZ is toxic, and therapeutic dosages are limited by severe side effects. Targeted delivery is thus needed to improve efficiency and reduce
Coleus amboinicus(Lour) (CA) has been reported to possess many pharmacological activities. In this study, evaluation of cytotoxicity using brine shrimp lethality bioassay and MTT assay using WiDr cell lines was carried out. The expression of several genes responsible for programmed cell death
To evaluate the effects of poly(ethylene glycol) (PEG) grafting density on the tumor targeting efficacy of nanoparticles (NPs) with ligand modification, various amounts of PEG were conjugated to linoleic acid and poly(β-malic acid) double grafted chitosan (LMC) NPs bearing similar substitution
From the roots of Lepidium meyenii Walpers (Brassicaceae) have been isolated and identified 2 flavonolignans, tricin 4'-O-[threo-β-guaiacyl-(7″-O-methyl)-glyceryl] ether (1) and tricin 4'-O-(erythro-β-guaiacyl-glyceryl) ether (2), along with 11 other known compounds, tricin (3), pinoresinol (4),
Professor Black and colleagues have been working to improve the quality and sensitivity of imaging in the early detection of conditions from brain tumors to Alzheimer's disease to enhance treatment protocols and patient management. Professor Black et al introduced nanoparticles to improve MRI
Poly(β-l-malic acid) (PMLA) together with its derivatives is an aliphatic polyester with superior bio-properties for anti-tumor drugs. In order to surmount the obstacles of low drug loading and rapid premature release during the circulation of polyester-based micelles, micelles based on
The synthesis of docetaxel esters of malic acid is described. These compounds were found to have greatly improved water solubility and are stable in solution at neutral pH. The C2' modified compounds 2a-c and 3a-c behave as prodrugs, that is, docetaxel is generated upon exposure to human plasma,
Poly (β‑malic acid), referred to as PMLA, has been synthesized and introduced as a polymeric drug carrier due to its desirable biological properties. In the present study, a novel pH‑sensitive polymer‑drug conjugate based on PMLA, PMLA‑Hz‑doxorubicin (DOX), was prepared, and another conjugate,
Biodegradable nanopolymers are believed to offer great potential in cancer therapy. Here, we report the characterization of a novel, targeted, nanobiopolymeric conjugate based on biodegradable, nontoxic, and nonimmunogenic PMLA [poly(β-l-malic acid)]. The PMLA nanoplatform was synthesized for
Poly(β-L-malic acid) (PMLA), a natural aliphatic polyester, has been proven to be a promising carrier for anti-cancer drugs. In spite of excellent bio-compatibility, the application of PMLA as the drug carrier for cancer therapy is limited by its low cellular uptake efficiency. The strong negative
To overcome the strong negative charge and improve the endocytosis of poly-β-malic acid (PMLA) as a drug carrier, a pH-sensitive nanoconjugate of PMLA/hyd-PEG5000/PEG2000-TAT/DOX (PHPTD) was developed. The trans activator of transcription (TAT) modified with polyethylene glycol2000(PEG2000) was
A supramolecular injectable hydrogel was fabricated. The hydrogel was in situ gelated by the host-guest interaction between alpha-cyclodextrins (alpha-CDs) and methylated poly(ethylene glycol) grafted poly(alpha,beta-malic acid) (mPEG-g-PMA). The hydrogel was characterized by (1)NMR, XRD, DSC, TGA