Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

pyruvic acid/arabidopsis thaliana

O link é salvo na área de transferência
ArtigosTestes clínicosPatentes
Página 1 a partir de 17 resultados
A rapid and simple method is described for the determination of indole-3-pyruvic acid (IPA) levels in Arabidopsis thaliana by gas chromatography-selected ion monitoring-mass spectrometry (GC-SIM-MS). The method includes derivatization of IPA with hydroxylamine in the crude extract, followed by ethyl

ER Microsome Preparation in Arabidopsis thaliana.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Microsomes are vesicles derived from the endoplasmic reticulum (ER) when cells are broken down in the lab. These microsomes are a valuable tool to study a variety of ER functions such as protein and lipid synthesis in vitro.Here we describe a protocol to isolate ER-derived microsomes Arabidopsis

The Arabidopsis YUCCA1 flavin monooxygenase functions in the indole-3-pyruvic acid branch of auxin biosynthesis.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
The effects of auxins on plant growth and development have been known for more than 100 years, yet our understanding of how plants synthesize this essential plant hormone is still fragmentary at best. Gene loss- and gain-of-function studies have conclusively implicated three gene families,
Auxin, a phytohormone that affects almost every aspect of plant growth and development, is biosynthesized from tryptophan via the tryptamine, indole-3-acetamide, indole-3-pyruvic acid, and indole-3-acetaldoxime pathways. YUCCAs (YUCs), flavin monooxygenase enzymes, catalyze the conversion of

A mutation affecting the synthesis of 4-chloroindole-3-acetic acid.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Traditionally, schemes depicting auxin biosynthesis in plants have been notoriously complex. They have involved up to four possible pathways by which the amino acid tryptophan might be converted to the main active auxin, indole-3-acetic acid (IAA), while another pathway was suggested to bypass

Plant-derived auxin plays an accessory role in symptom development upon Rhodococcus fascians infection.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
The biotrophic phytopathogen Rhodococcus fascians has a profound impact on plant development, mainly through its principal virulence factors, a mix of synergistically acting cytokinins that induce shoot formation. Expression profiling of marker genes for several auxin biosynthesis routes and mutant
Observations gained from model organisms are essential, yet it remains unclear to which degree they are applicable to distant relatives. For example, in the dicotyledon Arabidopsis thaliana (Arabidopsis), auxin biosynthesis via indole-3-pyruvic acid (IPA) is essential for root development and

Biosynthetic origin of BE-10988 in Streptomyces sp. BA10988.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
The biosynthetic origin of the tumor-inhibitory derivative, BE-10988, was studied in Streptomyces sp . BA10988 by retrobiosynthetic NMR analysis using [U-(13)C6]glucose as a precursor. The isotopologue compositions of the indole moieties of BE-10988 and tryptophan were virtually identical. This

Evolution of camalexin and structurally related indolic compounds.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Structurally related secondary products are rather rarely shared by organisms from different kingdoms. Consequently, the evolution of biosynthetic pathways of defence metabolites between distantly related organisms has not been broadly investigated. Thiazolylindoles are found in Arabidopsis

Cadmium toxicity is alleviated by AtLCD and AtDCD in Escherichia coli.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
OBJECTIVE Arabidopsis thaliana l- and d-cysteine desulfhydrases (AtLCD and AtDCD) are two important H(2) S-generating enzymes. This study determined the effects of H(2) S derived from AtLCD and AtDCD on cadmium (Cd) toxicity in Escherichia coli. RESULTS AtLCD and AtDCD were cloned into pET28a
The interactions between phytohormones are crucial for plants to adapt to complex environmental changes. One example is the ethylene-regulated local auxin biosynthesis in roots, which partly contributes to ethylene-directed root development and gravitropism. Using a chemical biology approach, we

Local auxin metabolism regulates environment-induced hypocotyl elongation.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
A hallmark of plants is their adaptability of size and form in response to widely fluctuating environments. The metabolism and redistribution of the phytohormone auxin play pivotal roles in establishing active auxin gradients and resulting cellular differentiation. In Arabidopsis thaliana,
Auxin plays a fundamental role in organogenesis in plants. Multiple pathways for auxin biosynthesis have been proposed, but none of the predicted pathways are completely understood. Here, we report the positional cloning and characterization of the vanishing tassel2 (vt2) gene of maize (Zea mays).
Indole-3-acetic acid (IAA), a major plant auxin, is produced in both tryptophan-dependent and tryptophan-independent pathways. A major pathway in Arabidopsis thaliana generates IAA in two reactions from tryptophan. Step one converts tryptophan to indole-3-pyruvic acid (IPA) by tryptophan

Transcriptional feedback regulation of YUCCA genes in response to auxin levels in Arabidopsis.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
CONCLUSIONS The IPyA pathway, the major auxin biosynthesis pathway, is transcriptionally regulated through a negative feedback mechanism in response to active auxin levels. The phytohormone auxin plays an important role in plant growth and development, and levels of active free auxin are determined
Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge