Página 1 a partir de 39 resultados
The iron-sulfur protein is an essential component of mitochondrial complex II (succinate dehydrogenase, SDH), which is a functional enzyme of both the citric acid cycle and the respiratory electron transport chain. This protein is encoded by a single-copy nuclear gene in mammals and fungi and by a
The succinate dehydrogenase complex (complex II) is a highly conserved protein complex composed of the SDH1 to SDH4 subunits in bacteria and in the mitochondria of animals and fungi. The reason for the occurrence of up to four additional subunits in complex II of plants, termed SDH5 to SDH8, so far
The effect of light on succinate dehydrogenase (SDH) activity and mRNA content was studied in Arabidopsis thaliana plants. The transition from darkness to light caused a short transient increase in the SDH activity followed by a decrease to a half of the original activity. The white or red light
The ferrous iron and 2-oxoglutarate (2OG) dependent oxygenases catalyse two electron oxidation reactions by coupling the oxidation of substrate to the oxidative decarboxylation of 2OG, giving succinate and carbon dioxide coproducts. The evidence available on the level of incorporation of one atom
Succinate dehydrogenase (Complex II; SDH) plays an important role in mitochondrial respiratory metabolism. The SDH complex consists of four core subunits and multiple cofactors, which must be assembled correctly to ensure enzyme function. To date, only an assembly factor (SDHAF2) required for FAD
Complementation of a yeast acr1 mutant carrying a deletion of the succinate/fumarate carrier gene enabled functional identification of a mitochondrial succinate translocator from Arabidopsis thaliana (AtmSFC1). Thus complementation of yeast mutants is applicable also for identification and
Maintenance of protein quality control and turnover is essential for cellular homeostasis. In plant organelles this biological process is predominantly performed by ATP-dependent proteases. Here, a genetic screen was performed that led to the identification of Arabidopsis thaliana Lon1 protease
During germination and subsequent growth of fatty seeds, higher plants obtain energy from the glyconeogenic pathway in which fatty acids are converted to succinate in glyoxysomes, which contain enzymes for fatty acid beta-oxidation and the glyoxylate cycle. The Arabidopsis thaliana ped1 gene encodes
The DNA polymerase chain reaction was developed for in vitro amplification of specific DNA sequences, and it has been used for a wide variety of purposes in several fields. We have developed an application of the polymerase chain reaction that is useful for the isolation of partial cDNA or genomic
Frataxin, a protein crucial for the biogenesis of mitochondria in different organisms, was recently identified in Arabidopsis thaliana. To investigate the role of frataxin in higher plants, we analyze two knock-out and one knock-down T-DNA insertion mutants. The knock-out mutants present an
The endoplasmic reticulum (ER) is the main site of secretory protein production and folding and its homeostasis under environmental stress is vital for the maintenance of the protein secretory pathway. The loss of homeostasis and accumulation of unfolded proteins in the ER is referred to as ER
Reactive oxygen species (ROS) are signaling molecules that regulate plant development and responses to stresses. Mitochondria are the source of most ROS in heterotrophic cells, and mitochondrial complex I and complex III are regarded as the main sites of ROS production in plant mitochondria. Recent
Screening of the Arabidopsis thaliana genome revealed three potential homologues of mammalian and yeast mitochondrial DICs (dicarboxylate carriers) designated as DIC1, DIC2 and DIC3, each belonging to the mitochondrial carrier protein family. DIC1 and DIC2 are broadly expressed at comparable levels
The toxicity of graphene on suspensions of Arabidopsis thaliana (Columbia ecotype) T87 cells was investigated by examining the morphology, mitochondrial dysfunction, reactive oxygen species generation (ROS), and translocation of graphene as the toxicological endpoints. The cells were grown in
The Arabidopsis thaliana genome contains four genes encoding NADP-malic enzymes (NADP-ME1-4). Two isoenzymes, NADP-ME2 and NADP-ME3, which are shown to be located in the cytosol, share a remarkably high degree of identity (90%). However, they display different expression patterns and show distinct