Romanian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BMC Medical Genomics 2009-Dec

A transcriptomic computational analysis of mastic oil-treated Lewis lung carcinomas reveals molecular mechanisms targeting tumor cell growth and survival.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Linkul este salvat în clipboard
Panagiotis Moulos
Olga Papadodima
Aristotelis Chatziioannou
Heleni Loutrari
Charis Roussos
Fragiskos N Kolisis

Cuvinte cheie

Abstract

BACKGROUND

Mastic oil from Pistacia lentiscus variation chia, a blend of bioactive terpenes with recognized medicinal properties, has been recently shown to exert anti-tumor growth activity through inhibition of cancer cell proliferation, survival, angiogenesis and inflammatory response. However, no studies have addressed its mechanisms of action at genome-wide gene expression level.

METHODS

To investigate molecular mechanisms triggered by mastic oil, Lewis Lung Carcinoma cells were treated with mastic oil or DMSO and RNA was collected at five distinct time points (3-48 h). Microarray expression profiling was performed using Illumina mouse-6 v1 beadchips, followed by computational analysis. For a number of selected genes, RT-PCR validation was performed in LLC cells as well as in three human cancer cell lines of different origin (A549, HCT116, K562). PTEN specific inhibition by a bisperovanadium compound was applied to validate its contribution to mastic oil-mediated anti-tumor growth effects.

RESULTS

In this work we demonstrated that exposure of Lewis lung carcinomas to mastic oil caused a time-dependent alteration in the expression of 925 genes. GO analysis associated expression profiles with several biological processes and functions. Among them, modifications on cell cycle/proliferation, survival and NF-kappaB cascade in conjunction with concomitant regulation of genes encoding for PTEN, E2F7, HMOX1 (up-regulation) and NOD1 (down-regulation) indicated some important mechanistic links underlying the anti-proliferative, pro-apoptotic and anti-inflammatory effects of mastic oil. The expression profiles of Hmox1, Pten and E2f7 genes were similarly altered by mastic oil in the majority of test cancer cell lines. Inhibition of PTEN partially reversed mastic oil effects on tumor cell growth, indicating a multi-target mechanism of action. Finally, k-means clustering, organized the significant gene list in eight clusters demonstrating a similar expression profile. Promoter analysis in a representative cluster revealed shared putative cis-elements suggesting a common regulatory transcription mechanism.

CONCLUSIONS

Present results provide novel evidence on the molecular basis of tumor growth inhibition mediated by mastic oil and set a rational basis for application of genomics and bioinformatic methodologies in the screening of natural compounds with potential cancer chemopreventive activities.

Alăturați-vă paginii
noastre de facebook

Cea mai completă bază de date cu plante medicinale susținută de știință

  • Funcționează în 55 de limbi
  • Cure pe bază de plante susținute de știință
  • Recunoașterea ierburilor după imagine
  • Harta GPS interactivă - etichetați ierburile în locație (în curând)
  • Citiți publicațiile științifice legate de căutarea dvs.
  • Căutați plante medicinale după efectele lor
  • Organizați-vă interesele și rămâneți la curent cu noutățile de cercetare, studiile clinice și brevetele

Tastați un simptom sau o boală și citiți despre plante care ar putea ajuta, tastați o plantă și vedeți boli și simptome împotriva cărora este folosit.
* Toate informațiile se bazează pe cercetări științifice publicate

Google Play badgeApp Store badge