Romanian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Toxicology 2012-Sep

Dietary modulation of the biotransformation and genotoxicity of aflatoxin B(1).

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Linkul este salvat în clipboard
Kerstin Gross-Steinmeyer
David L Eaton

Cuvinte cheie

Abstract

Diet and its various components are consistently identified as among the most important 'risk factors' for cancer worldwide, yet great uncertainty remains regarding the relative contribution of nutritive (e.g., vitamins, calories) vs. non-nutritive (e.g., phytochemicals, fiber, contaminants) factors in both cancer induction and cancer prevention. Among the most potent known human dietary carcinogens is the mycotoxin, aflatoxin B(1) (AFB). AFB and related aflatoxins are produced as secondary metabolites by the molds Aspergillus flavus and Aspergillus parasiticus that commonly infect poorly stored foods including peanuts, pistachios, corn, and rice. AFB is a potent hepatocarcinogenic agent in numerous animal species, and has been implicated in the etiology of human hepatocellular carcinoma. Recent research has shown that many diet-derived factors have great potential to influence AFB biotransformation, and some efficiently protect from AFB-induced genotoxicity. One key mode of action for reducing AFB-induced carcinogenesis in experimental animals was shown to be the induction of detoxification enzymes such as certain glutathione-S-transferases that are regulated through the Keap1-Nrf2-ARE signaling pathway. Although initial studies utilized the dithiolthione drug, oltipraz, as a prototypical inducer of antioxidant response, dietary components such as suforaphane (SFN) are also effective inducers of this pathway in rodent models. However, human GSTs in general do not appear to be extensively induced by SFN, and GSTM1 - the only human GST with measurable catalytic activity toward aflatoxin B(1)-8,9-epoxide (AFBO; the genotoxic metabolite of AFB), does not appear to be induced by SFN, at least in human hepatocytes, even though its expression in human liver cells does appear to offer considerable protection against AFB-DNA damage. Although induction of detoxification pathways has served as the primary mechanistic focus of chemoprevention studies, protective effects of chemoprotective dietary components may also arise through a decrease in the rate of activation of AFB to AFBO. Dietary consumption of apiaceous vegetables inhibits CYP1A2 activity in humans, and it has been demonstrated that some compounds in those vegetables act as potent inhibitors of human CYP1A2 and cause reduced hCYP1A2-mediated mutagenicity of AFB. Other dietary compounds of different origin (e.g., constituents of brassica vegetables and hops) have been shown to modify expression of human hepatic enzymes involved in the oxidation of AFB. SFN has been shown to protect animals from AFB-induced tumors, to reduce AFB biomarkers in humans in vivo and to reduce efficiently AFB adduct formation in human hepatocytes, although it appears that this protective effect is the result of repression of human hepatic CYP3A4 expression, rather than induction of protective GSTs, at least in human hepatocytes. If this mechanism were to occur in vivo in humans, it would raise safety concerns for the use of SFN as a chemoprotective agent as it may have important implications for drug-drug interactions in humans. A dietary chemoprevention pathway that is independent of AFB biotransformation is represented by the potential for dietary components, such as chlorophyllin, to tightly bind to and reduce the bioavailability of aflatoxins. Chlorophyllin has been shown to significantly reduce genotoxic AFB biomarkers in humans, and it therefore holds promise as a practical means of reducing the incidence of AFB-induced liver cancer. Recent reports have demonstrated that DNA repair mechanisms are inducible in mammalian systems and some diet-derived compounds elevated significantly the gene expression of enzymes potentially involved in nucleotide excision repair of AFB-DNA adducts. However, these are initial observations and more research is needed to determine if dietary modulation of DNA repair is a safe and effective approach to chemoprevention of AFB-induced liver cancer.

Alăturați-vă paginii
noastre de facebook

Cea mai completă bază de date cu plante medicinale susținută de știință

  • Funcționează în 55 de limbi
  • Cure pe bază de plante susținute de știință
  • Recunoașterea ierburilor după imagine
  • Harta GPS interactivă - etichetați ierburile în locație (în curând)
  • Citiți publicațiile științifice legate de căutarea dvs.
  • Căutați plante medicinale după efectele lor
  • Organizați-vă interesele și rămâneți la curent cu noutățile de cercetare, studiile clinice și brevetele

Tastați un simptom sau o boală și citiți despre plante care ar putea ajuta, tastați o plantă și vedeți boli și simptome împotriva cărora este folosit.
* Toate informațiile se bazează pe cercetări științifice publicate

Google Play badgeApp Store badge