Romanian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Chromatography A 2019-Jul

Effect-directed analysis by high-performance thin-layer chromatography for bioactive metabolites tracking in Primula veris flower and Primula boveana leaf extracts.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Linkul este salvat în clipboard
Ehab Mahran
Ibrahim Gamal
Michael Keusgen
Gertrud Morlock

Cuvinte cheie

Abstract

The genus Primula (Primulaceae) comprises species with high medicinal as well as ornamental values. Plants belonging to this genus are well recognized for their richness in bioactive constituents. The huge variety of secondary metabolites make their complete analysis impossible. In order to cope with this challenge, effect-directed analysis (EDA) via HPTLC coupled to structure elucidation techniques was applied on Primula species for the first time. As straightforward non-target bioanalytical technique, HPTLC-UV/Vis/FLD-EDA-ESI-HRMS hyphenates three different orthogonal dimensions, i.e. chromatography with spectrometric detection, biological/enzymatic assays and HRMS. The bioactive metabolites were determined in the middle polar extracts of two Primula species, P. veris (flower) and P. boveana (leaf). The bioactivity profiling comprised the antibacterial activity against Aliivibrio fischeri and Bacillus subtilis bacterial strains and acetyl-/butyrylcholinesterase (AChE/BChE) inhibition assays. The compounds were characterized and identified via their recorded spectral data (HRMS and 1H NMR). The results showed that linoleic and linolenic acids were the principle bioactive compounds present in the studied P. veris flower extract. In the P. boveana leaf extract, flavone, 2'-methoxy-, 2'-hydroxy- and 5,6,2',6'-tetramethoxyflavone (zapotin) were determined as active metabolites. The identification of zapotin, which was previously undescribed in the investigated plant, was considered as the strength of the straightforward non-target bioanalytical technique. Flavone turned out to be the highest potent metabolite, and at the same time, a multipotent compound referring to its various bioactivities discovered. An equivalency calculation of the HPTLC-AChE inhibition by flavone was performed with reference to the well-known inhibitor rivastigmine. As a result, the amount of flavone contained in 10.0 μg dry powder of P. boveana (corresponding to 0.1 μL extract) inhibited as strong as 4.5 μg rivastigmine. In other words, the flavone contained in P. boveana leaf extract powder turned out to be half as strong as the well-known AChE inhibitor rivastigmine.

Alăturați-vă paginii
noastre de facebook

Cea mai completă bază de date cu plante medicinale susținută de știință

  • Funcționează în 55 de limbi
  • Cure pe bază de plante susținute de știință
  • Recunoașterea ierburilor după imagine
  • Harta GPS interactivă - etichetați ierburile în locație (în curând)
  • Citiți publicațiile științifice legate de căutarea dvs.
  • Căutați plante medicinale după efectele lor
  • Organizați-vă interesele și rămâneți la curent cu noutățile de cercetare, studiile clinice și brevetele

Tastați un simptom sau o boală și citiți despre plante care ar putea ajuta, tastați o plantă și vedeți boli și simptome împotriva cărora este folosit.
* Toate informațiile se bazează pe cercetări științifice publicate

Google Play badgeApp Store badge