Romanian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Disease 2012-Jun

First Report of the Crucifer Pathogen Pseudomonas cannabina pv. alisalensis Causing Bacterial Blight on Radish (Raphanus sativus) in Germany.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Linkul este salvat în clipboard
I Rubio
G Hiddink
M Asma
C Bull

Cuvinte cheie

Abstract

In 2008, a bacterial blight was observed on Raphanus sativus in the Pfalz region in Germany. Disease was sporadic but severe when present within R. sativus fields, which resulted in unmarketable crops. Symptoms consisted of small, angular, water-soaked flecks that often were surrounded by chlorotic haloes. Lesions were visible from adaxial and abaxial leaf surfaces and generally retained chlorotic borders. A gram-negative, bluefluorescing bacterium was isolated from surface-disinfested leaf tissue on King's medium B agar. The radish isolate was levan positive, oxidase negative, and arginine dihydrolase negative. The isolate did not rot potato slices but induced a hypersensitive reaction in tobacco. These reactions corresponded to Lelliot's LOPAT group 1 (2). Repetitive extragenic palindromic sequence (rep)-PCR assays using the BOXA1R primer resulted in different DNA fragment banding patterns between the radish isolate and the pathotype strain of Pseudomonas syringae pv. maculicola (CFBP 1657), but identical DNA fragment banding patterns between the radish isolate and the pathotype strain of P. cannabina pv. alisalensis (CFBP 6866). Unlike P. syringae pv. maculicola, P. cannabina pv. alisalensis and the radish isolate were lysed by bacteriophage PBS1 (1). Pathogenicity was evaluated on two hosts, radish (R. sativus cv. Comet) and broccoli raab (Brassica rapa cv. Sorrento). In each of two independent experiments, 3-week-old radish and broccoli raab plants were inoculated with either the radish isolate, P. cannabina pv. alisalensis, or P. syringae pv. maculicola. Inoculum was prepared by growing the bacteria on nutrient agar for 48 h at 27°C, suspending the bacteria in 0.01 M phosphate buffer (pH 7.0), and adjusting each suspension to 0.6 OD at 600 nm (approximately 1 × 108 CFU/ml). All plants were inoculated by spraying until runoff, incubated in a humidity chamber for 48 h, then placed in a greenhouse at 20 to 25°C for symptom development. Plants inoculated with P. cannabina pv. alisalensis or sprayed with buffer served as positive and negative control treatments, respectively. Seven to ten days postinoculation, the development of symptoms similar to those originally observed in the field were observed on plants inoculated with the radish isolate. In addition, symptoms on radish and broccoli raab plants caused by the radish isolate were similar to symptoms caused by P. cannabina pv. alisalensis in contrast to the lack of symptoms on plants inoculated with P. syringae pv. maculicola. Bacteria isolated from symptomatic tissue and surface-disinfested with sodium hypochlorite (0.525%) had identical characteristics to the radish isolate used to inoculate plants and to the P. cannabina pv. alisalensis pathotype for LOPAT reactions, rep-PCR DNA fragment banding pattern analysis, and sensitivity to phage PBS1, thus fulfilling Koch's postulates. To our knowledge, this is the first report of P. cannabina pv. alisalensis isolated from diseased crucifers in Germany. Verification of P. cannabina pv. alisalensis in Germany indicates that German crucifer growers should differentiate between outbreaks caused by P. cannabina pv. alisalensis and P. syringae pv. maculicola and apply appropriate, specific management strategies. References: (1) C. T. Bull et al. Syst. Appl. Microbiol. 33:105, 2010. (2) R. A. Lelliott. J. Appl. Bacteriol. 29:470, 1966.

Alăturați-vă paginii
noastre de facebook

Cea mai completă bază de date cu plante medicinale susținută de știință

  • Funcționează în 55 de limbi
  • Cure pe bază de plante susținute de știință
  • Recunoașterea ierburilor după imagine
  • Harta GPS interactivă - etichetați ierburile în locație (în curând)
  • Citiți publicațiile științifice legate de căutarea dvs.
  • Căutați plante medicinale după efectele lor
  • Organizați-vă interesele și rămâneți la curent cu noutățile de cercetare, studiile clinice și brevetele

Tastați un simptom sau o boală și citiți despre plante care ar putea ajuta, tastați o plantă și vedeți boli și simptome împotriva cărora este folosit.
* Toate informațiile se bazează pe cercetări științifice publicate

Google Play badgeApp Store badge