Romanian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biotechnology and Bioengineering 2002-Oct

Glucose-to-fructose conversion at high temperatures with xylose (glucose) isomerases from Streptomyces murinus and two hyperthermophilic Thermotoga species.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Linkul este salvat în clipboard
Rockey K Bandlish
J Michael Hess
Kevin L Epting
Claire Vieille
Robert M Kelly

Cuvinte cheie

Abstract

The conversion of glucose to fructose at elevated temperatures, as catalyzed by soluble and immobilized xylose (glucose) isomerases from the hyperthermophiles Thermotoga maritima (TMGI) and Thermotoga neapolitana 5068 (TNGI) and from the mesophile Streptomyces murinus (SMGI), was examined. At pH 7.0 in the presence of Mg(2+), the temperature optima for the three soluble enzymes were 85 degrees C (SMGI), 95 degrees to 100 degrees C (TNGI), and >100 degrees C (TMGI). Under certain conditions, soluble forms of the three enzymes exhibited an unusual, multiphasic inactivation behavior in which the decay rate slowed considerably after an initial rapid decline. However, the inactivation of the enzymes covalently immobilized to glass beads, monophasic in most cases, was characterized by a first-order decay rate intermediate between those of the initial rapid and slower phases for the soluble enzymes. Enzyme productivities for the three immobilized GIs were determined experimentally in the presence of Mg(2+). The highest productivities measured were 750 and 760 kg fructose per kilogram SMGI at 60 degrees C and 70 degrees C, respectively. The highest productivity for both TMGI and TNGI in the presence of Mg(2+) occurred at 70 degrees C, pH 7.0, with approximately 230 and 200 kg fructose per kilogram enzyme for TNGI and TMGI, respectively. At 80 degrees C and in the presence of Mg(2+), productivities for the three enzymes ranged from 31 to 273. A simple mathematical model, which accounted for thermal effects on kinetics, glucose-fructose equilibrium, and enzyme inactivation, was used to examine the potential for high-fructose corn syrup (HFCS) production at 80 degrees C and above using TNGI and SMGI under optimal conditions, which included the presence of both Co(2+) and Mg(2+). In the presence of both cations, these enzymes showed the potential to catalyze glucose-to-fructose conversion at 80 degrees C with estimated lifetime productivities on the order of 2000 kg fructose per kilogram enzyme, a value competitive with enzymes currently used at 55 degrees to 65 degrees C, but with the additional advantage of higher fructose concentrations. At 90 degrees C, the estimated productivity for SMGI dropped to 200, whereas, for TNGI, lifetime productivities on the order of 1000 were estimated. Assuming that the most favorable biocatalytic and thermostability features of these enzymes can be captured in immobilized form and the chemical lability of substrates and products can be minimized, HFCS production at high temperatures could be used to achieve higher fructose concentrations as well as create alternative processing strategies.

Alăturați-vă paginii
noastre de facebook

Cea mai completă bază de date cu plante medicinale susținută de știință

  • Funcționează în 55 de limbi
  • Cure pe bază de plante susținute de știință
  • Recunoașterea ierburilor după imagine
  • Harta GPS interactivă - etichetați ierburile în locație (în curând)
  • Citiți publicațiile științifice legate de căutarea dvs.
  • Căutați plante medicinale după efectele lor
  • Organizați-vă interesele și rămâneți la curent cu noutățile de cercetare, studiile clinice și brevetele

Tastați un simptom sau o boală și citiți despre plante care ar putea ajuta, tastați o plantă și vedeți boli și simptome împotriva cărora este folosit.
* Toate informațiile se bazează pe cercetări științifice publicate

Google Play badgeApp Store badge