Romanian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Ethnopharmacology 2018-Feb

High hepatic exposure of furanocoumarins in Radix Angelica dahuricae is associated with transporter mediated active uptake.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Linkul este salvat în clipboard
Lin Chen
Haiying Yang
Chenchen Yu
Mei Yuan
Hua Li

Cuvinte cheie

Abstract

BACKGROUND

Radix Angelica dahuricae (RAD), the roots of Angelica dahurica (Hoffm.) Benth. & Hook.f. ex Franch. & Sav, is a well-known traditional Chinese medicine (TCM) and has been used for centuries to treat headaches, toothaches, nose congestion, abscesses, furunculoses, and acne. This herb is also one of frequently reported TCMs showing the herb-drug interaction potential. Furanocoumarins are main bioactive components of RAD.

OBJECTIVE

This study is designed to characterize the tissue distribution profiles of furanocoumarins after oral administration of RAD extract in rats and to explore the mechanism underlying the high hepatic exposure of the major furanocoumarins.

METHODS

The tissue distribution of nine furanocoumarins was determined in rats after an oral dose of 0.46g/kg RAD extract using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Unbound fractions (ƒu) of major furanocoumarins, including imperatorin (IM), isoimperatorin (IIM), bergapten (BER) and oxypeucedanin hydrate (OXYH), were measured in rat plasma and selected tissue homogenates (liver, kidney, lung and brain) with Rapid Equilibrium Dialysis (RED) method. The temperature dependent hepatic uptake of IM, IIM, BER and OXYH were evaluated in suspended rat primary hepatocytes at 4°C or 37°C by the oil-spin method. The uptake kinetics was conducted in the cells over a wide concentration range. The furanocoumarins were co-incubated with a panel of transporter inhibitors to investigate the involvement of uptake transporters in the hepatic uptake. The transcellular transport characteristics of IM, IIM, BER and OXYH were further assessed using Caco-2 cell monolayer model.

RESULTS

IM, IIM, BER and OXYH were found to be the major bioactive furanocoumarins in rat plasma and tissues, representing more than 90% exposure for all the detected furanocoumarins. The most concentrative organ of major furanocoumarins was the liver, with liver-to-plasma exposure ratio (Kp,AUC) of 5.1, 6.5 and 4.7 for IM, IIM and BER, and 2.3 for OXYH, respectively. IM, IIM and BER also showed higher concentrations in the kidney with Kp above 2.2. The higher protein binding of the furanocoumarins partially contributed to their higher tissue exposure. In suspended rat primary hepatocyte, the hepatic uptake of IM, IIM, BER and OXYH was temperature-dependent, with considerably higher uptake at 37°C than at 4°C. Uptake kinetics indicated that the hepatic uptake of IM, IIM, BER and OXYH involved both active transport and passive diffusion processes. For IM, IIM and BER, the contribution of the active transport was greater than the passive process, with the CLactive/CLuptake > 72%. Ritonavir (RTN) and cyclosporine A (CsA), the known inhibitors of organic anion transporting polypeptide (Oatp) significantly inhibited the hepatic uptake of IM and BER, while the inhibitor of the organic anion transporters (Oat) probenecid (PBC) remarkably reduced IIM uptake. In the Caco-2 cell model, the furanocoumarins were highly permeable in the apical to basolateral direction without notable active efflux.

CONCLUSIONS

The furanocoumarins rapidly and widely distributed into various tissues after oral dose of the RAD extract. IM, IIM, BER and OXYH were the major components detected in both plasma and tissues. Liver was the most distributed tissue of the total and free furanocoumarins. Non-specific protein binding contributed partially to the higher tissue exposures of these bioactive components. The Oatp and Oat mediated active uptake played the primal role in the high hepatic exposure of the furanocoumarins.

Alăturați-vă paginii
noastre de facebook

Cea mai completă bază de date cu plante medicinale susținută de știință

  • Funcționează în 55 de limbi
  • Cure pe bază de plante susținute de știință
  • Recunoașterea ierburilor după imagine
  • Harta GPS interactivă - etichetați ierburile în locație (în curând)
  • Citiți publicațiile științifice legate de căutarea dvs.
  • Căutați plante medicinale după efectele lor
  • Organizați-vă interesele și rămâneți la curent cu noutățile de cercetare, studiile clinice și brevetele

Tastați un simptom sau o boală și citiți despre plante care ar putea ajuta, tastați o plantă și vedeți boli și simptome împotriva cărora este folosit.
* Toate informațiile se bazează pe cercetări științifice publicate

Google Play badgeApp Store badge