Romanian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Microbiology 1999-Jan

Identification of protease and rpoN-associated genes of uropathogenic Proteus mirabilis by negative selection in a mouse model of ascending urinary tract infection.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Linkul este salvat în clipboard
H Zhao
X Li
D E Johnson
H L Mobley

Cuvinte cheie

Abstract

Proteus mirabilis, a motile gram-negative bacterium, is a principal cause of urinary tract infections in patients with functional or anatomical abnormalities of the urinary tract or those with urinary catheters in place. Thus far, virulence factors including urease, flagella, haemolysin, various fimbriae, IgA protease and a deaminase have been characterized based on the phenotypic traits conferred by these proteins. In this study, an attempt was made to identify new virulence genes of P. mirabilis that may not have identifiable phenotypes using the recently described technique of signature-tagged mutagenesis. A pool of chromosomal transposon mutants was made through conjugation and kanamycin/tetracycline selection; random insertion was confirmed by Southern blotting of chromosomal DNA isolated from 16 mutants using the aphA gene as a probe. From the total pool, 2.3% (9/397) auxotrophic mutants and 3.5% (14/397) swarming mutants were identified by screening on minimal salts agar and Luria agar plates, respectively. Thirty per cent of the mutants, found to have either no tag or an unamplifiable tag, were removed from the input pool. Then 10(7) c.f.u. from a 96-mutant pool (approximately 10(5) c.f.u. of each mutant) were used as an input pool to transurethrally inoculate seven CBA mice. After 2 d infection, bacteria were recovered from the bladders and kidneys and yielded about 10(5) c.f.u. as an output pool. Dot blot analysis showed that two of the 96 mutants, designated B2 and B5, could not be hybridized by signature tags amplified from the bladder output pool. Interrupted genes from these two mutants were cloned and sequenced. The interrupted gene in B2 predicts a polypeptide of 37.3 kDa that shares amino acid similarity with a putative protease or collagenase precursor. The gene in B5 predicts a polypeptide of 32.6 kDa that is very similar to that encoded by ORF284 of the rpoN operon controlling expression of nitrogen-regulated genes from several bacterial species. The virulence of the two mutants was tested further by co-challenging CBA mice with each mutant and the parental strain. After 1 week of infection, the B2 and B5 mutants were recovered in numbers 100-fold and 1000-fold less than the parental strain, respectively. Using an in vitro assay, it was shown that the B2 mutant had significantly less (P = 0.0001) extracellular protease activity than the wild-type strain. These findings demonstrate that signature-tagged mutagenesis is a viable approach to identify bacterial genes associated with the ability to infect the urinary tract.

Alăturați-vă paginii
noastre de facebook

Cea mai completă bază de date cu plante medicinale susținută de știință

  • Funcționează în 55 de limbi
  • Cure pe bază de plante susținute de știință
  • Recunoașterea ierburilor după imagine
  • Harta GPS interactivă - etichetați ierburile în locație (în curând)
  • Citiți publicațiile științifice legate de căutarea dvs.
  • Căutați plante medicinale după efectele lor
  • Organizați-vă interesele și rămâneți la curent cu noutățile de cercetare, studiile clinice și brevetele

Tastați un simptom sau o boală și citiți despre plante care ar putea ajuta, tastați o plantă și vedeți boli și simptome împotriva cărora este folosit.
* Toate informațiile se bazează pe cercetări științifice publicate

Google Play badgeApp Store badge