Romanian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Radiation Oncology Biology Physics 1988-Jan

Interaction of interstitial photodynamic therapy and interstitial hyperthermia in a rat rhabdomyosarcoma--a pilot study.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Linkul este salvat în clipboard
P C Levendag
H P Marijnissen
V J de Ru
J A Versteeg
G C van Rhoon
W M Star

Cuvinte cheie

Abstract

Photodynamic therapy (PDT) involves the activation of photosensitizing drugs by light of appropriate wavelength. The photosensitive agent Hematoporphyrin Derivative (HPD) appears to be preferentially retained in malignant tumors; irradiation of HPD-containing tissue by light of appropriate wavelength (625 nm) and dose leads to (tumor) tissue destruction. The aim of this study is to achieve maximum tumor control probability with minimum normal tissue photosensitivity. In previous work from our laboratory it has been demonstrated that PDT has its fundamental effects on the tumor and normal tissue microcirculation. As it is well established that hyperthermia (HT) has its major effects in less well vascularized areas of the tumor, the combined modality of HT and PDT might prove to be advantageous. Moreover, suppression of sublethal damage repair by HT has been observed. To overcome the problem of poor light penetration into tissues and the high rate of recurrences following PDT with external irradiation, the combined effects of interstitial PDT with interstitial hyperthermia in a new line of animal experiments were studied in our laboratory. An experimental murine tumor (Rhabdomyosarcoma, type R-1) was transplanted in WAG/Rij rats and, after reaching an average diameter of 2 cm, the active component of HPD, that is Photofrin II, was injected intravenously in different dose schedules (5 mg/kg, 10 mg/kg). After 24 or 48 hrs the tumors were implanted with four flexible catheters, through which either light or heat could be applied. Light was obtained from an Argon-Dye laser system tuned to a wavelength of 625 nm at a dose rate of 75-100 mW per fiber to a dose level of 900 Joule from four linear light applicators. Heat (44 degrees C/30') was delivered by four 27 MHz radiofrequency antennas. Dose response relationships for PDT alone, HT alone and PDT combined with HT were established with cure as endpoint. This study showed that these two modalities, in the proper sequence and spacing, result in an augmented cytotoxicity on the tumor cells in vivo. With the combined modality treatment a cure rate of 41% (90 days) was obtained. As the implantation of flexible catheters is a well-known technique in radiation therapy practice, the potentiating effects of interstitial HT combined with interstitial PDT in solid tumors is very promising and clinical studies are warranted.

Alăturați-vă paginii
noastre de facebook

Cea mai completă bază de date cu plante medicinale susținută de știință

  • Funcționează în 55 de limbi
  • Cure pe bază de plante susținute de știință
  • Recunoașterea ierburilor după imagine
  • Harta GPS interactivă - etichetați ierburile în locație (în curând)
  • Citiți publicațiile științifice legate de căutarea dvs.
  • Căutați plante medicinale după efectele lor
  • Organizați-vă interesele și rămâneți la curent cu noutățile de cercetare, studiile clinice și brevetele

Tastați un simptom sau o boală și citiți despre plante care ar putea ajuta, tastați o plantă și vedeți boli și simptome împotriva cărora este folosit.
* Toate informațiile se bazează pe cercetări științifice publicate

Google Play badgeApp Store badge