Romanian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Pharmacology 1990-Dec

Investigation of the role of the phenolic hydroxyl in cannabinoid activity.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Linkul este salvat în clipboard
P H Reggio
H H Seltzman
D R Compton
W R Prescott
B R Martin

Cuvinte cheie

Abstract

Structure-activity relationship studies have suggested that the phenolic hydroxyl group is essential for the pharmacological activity of the cannabinoids. However, it remains to be established whether it is the hydrogen of the phenolic hydroxyl that is important (possibly because this hydrogen can participate in a hydrogen bonding interaction) or whether it is the oxygen of the phenolic hydroxyl that is important (possibly because one of the lone pairs of electrons in this oxygen can serve as a hydrogen bond acceptor). Two new etherified cannabinoids were prepared in which the phenolic hydroxyl oxygen is incorporated into a fourth ring. These new compounds were designed to test the importance both of the phenolic hydroxyl oxygen and of the orientation of its lone pairs of electrons for cannabinoid pharmacological activity. O,2-Propano-delta 8-tetrahydrocannabinol (0,2-Propano-delta 8-THC) was designed to mimic delta 9-THC in its phenol conformation I (C2-C1-O-H = 7 degrees). O,10-Methano-delta 9-tetrahydro-cannabinol (0,10-Methano-delta 9-THC) was designed to mimic delta 9-THC in its phenol conformation II (C2-C1-O-H = 167 degrees). Molecular mechanics calculations revealed that 1) there are two accessible minimum energy conformers for O,2-propano-delta 8-THC, which differ principally in the conformation of the new fourth ring, and 2) there are three accessible minimum energy conformers for O,10-methano-delta 9-THC, the first two of which differ mainly in the conformation of the new fourth ring, whereas the third possesses an alternate pyran ring conformation. Wave functions and molecular electrostatic potential (MEP) maps were calculated for each accessible conformer of O,2-propano-delta 8-THC and of O,10-methano-delta 9-THC. The resultant MEP maps compared well with the corresponding MEP maps generated for delta 9-THC in each of its two minimum energy conformations (two phenolic hydroxyl positions). These results imply that 1) O,2-propano-delta 8-THC should be capable of being recognized at a site that would recognize delta 9-THC in its phenol conformation 1 and 2) O,10-methano-delta 9-THC should be capable of being recognized at a site that would recognize delta 9-THC in its phenol conformation II. Pharmacological evaluation of the analogs revealed that O,10-methano-delta 9-THC was inactive in all mouse tests, as well as the rat drug discrimination model. O,2-Propano-delta 8-THC was similar to delta 8-THC in that it depressed rectal temperature and produced antinociception and ring immobility in mice.(ABSTRACT TRUNCATED AT 250 WORDS)

Alăturați-vă paginii
noastre de facebook

Cea mai completă bază de date cu plante medicinale susținută de știință

  • Funcționează în 55 de limbi
  • Cure pe bază de plante susținute de știință
  • Recunoașterea ierburilor după imagine
  • Harta GPS interactivă - etichetați ierburile în locație (în curând)
  • Citiți publicațiile științifice legate de căutarea dvs.
  • Căutați plante medicinale după efectele lor
  • Organizați-vă interesele și rămâneți la curent cu noutățile de cercetare, studiile clinice și brevetele

Tastați un simptom sau o boală și citiți despre plante care ar putea ajuta, tastați o plantă și vedeți boli și simptome împotriva cărora este folosit.
* Toate informațiile se bazează pe cercetări științifice publicate

Google Play badgeApp Store badge