Romanian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biomolecular Structure and Dynamics 2014

Simulation of the cavity-binding site of three bacterial multicopper oxidases upon complex stabilization: interactional profile and electron transference pathways.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Linkul este salvat în clipboard
Martiniano Bello
Jose Correa-Basurto
Enrique Rudiño-Piñera

Cuvinte cheie

Abstract

Previous studies have shown that multicopper oxidases (MCOs) oxidize organic and inorganic compounds through oxidation-reduction reactions in which three structurally and functionally arranged copper centers coordinate the uptake of an electron from a reduced substrate. Structural comparisons among three bacterial MCOs, with high structural homology and available three-dimensional information, reveal that the primary structural differences between these MCOs are located near the mononuclear copper center (T1Cu), where substrate oxidation occurs, as opposed to where the reduction of oxygen to water occurs at the trinuclear center. Nevertheless, this substrate oxidation is achieved through an outer-sphere electron transfer mechanism that does not generate a stable substrate-enzyme complex. In this study, MCOs from Thermus thermophilus (Tth-MCO), Bacillus subtilis (CotA), and Escherichia coli (CueO), which have been previously determined through X-ray crystallography, were used as models to analyze the binding modes of these MCOs to three organic molecules, with specific interest in the substrate-binding site. The binding mode of the electron-donor molecule to the electron transfer binding site was primarily attributed to hydrophobic contacts, which likely play an important role in the determination of substrate specificity. Some complexes generated in this study showed an electron donor molecule conformation in which an electron could be directly transferred to the histidines coordinating T1Cu, while for others additional electron transference pathways were also possible through the participation of charged residues during electron transfer.

Alăturați-vă paginii
noastre de facebook

Cea mai completă bază de date cu plante medicinale susținută de știință

  • Funcționează în 55 de limbi
  • Cure pe bază de plante susținute de știință
  • Recunoașterea ierburilor după imagine
  • Harta GPS interactivă - etichetați ierburile în locație (în curând)
  • Citiți publicațiile științifice legate de căutarea dvs.
  • Căutați plante medicinale după efectele lor
  • Organizați-vă interesele și rămâneți la curent cu noutățile de cercetare, studiile clinice și brevetele

Tastați un simptom sau o boală și citiți despre plante care ar putea ajuta, tastați o plantă și vedeți boli și simptome împotriva cărora este folosit.
* Toate informațiile se bazează pe cercetări științifice publicate

Google Play badgeApp Store badge