Romanian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Informatics for health & social care 2012-Mar

Syndromic surveillance models using Web data: the case of scarlet fever in the UK.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Linkul este salvat în clipboard
Loukas Samaras
Elena García-Barriocanal
Miguel-Angel Sicilia

Cuvinte cheie

Abstract

Recent research has shown the potential of Web queries as a source for syndromic surveillance, and existing studies show that these queries can be used as a basis for estimation and prediction of the development of a syndromic disease, such as influenza, using log linear (logit) statistical models. Two alternative models are applied to the relationship between cases and Web queries in this paper. We examine the applicability of using statistical methods to relate search engine queries with scarlet fever cases in the UK, taking advantage of tools to acquire the appropriate data from Google, and using an alternative statistical method based on gamma distributions. The results show that using logit models, the Pearson correlation factor between Web queries and the data obtained from the official agencies must be over 0.90, otherwise the prediction of the peak and the spread of the distributions gives significant deviations. In this paper, we describe the gamma distribution model and show that we can obtain better results in all cases using gamma transformations, and especially in those with a smaller correlation factor.

Alăturați-vă paginii
noastre de facebook

Cea mai completă bază de date cu plante medicinale susținută de știință

  • Funcționează în 55 de limbi
  • Cure pe bază de plante susținute de știință
  • Recunoașterea ierburilor după imagine
  • Harta GPS interactivă - etichetați ierburile în locație (în curând)
  • Citiți publicațiile științifice legate de căutarea dvs.
  • Căutați plante medicinale după efectele lor
  • Organizați-vă interesele și rămâneți la curent cu noutățile de cercetare, studiile clinice și brevetele

Tastați un simptom sau o boală și citiți despre plante care ar putea ajuta, tastați o plantă și vedeți boli și simptome împotriva cărora este folosit.
* Toate informațiile se bazează pe cercetări științifice publicate

Google Play badgeApp Store badge