Romanian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
NeuroImage: Clinical 2014

Voxel-based clustered imaging by multiparameter diffusion tensor images for glioma grading.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Linkul este salvat în clipboard
Rika Inano
Naoya Oishi
Takeharu Kunieda
Yoshiki Arakawa
Yukihiro Yamao
Sumiya Shibata
Takayuki Kikuchi
Hidenao Fukuyama
Susumu Miyamoto

Cuvinte cheie

Abstract

Gliomas are the most common intra-axial primary brain tumour; therefore, predicting glioma grade would influence therapeutic strategies. Although several methods based on single or multiple parameters from diagnostic images exist, a definitive method for pre-operatively determining glioma grade remains unknown. We aimed to develop an unsupervised method using multiple parameters from pre-operative diffusion tensor images for obtaining a clustered image that could enable visual grading of gliomas. Fourteen patients with low-grade gliomas and 19 with high-grade gliomas underwent diffusion tensor imaging and three-dimensional T1-weighted magnetic resonance imaging before tumour resection. Seven features including diffusion-weighted imaging, fractional anisotropy, first eigenvalue, second eigenvalue, third eigenvalue, mean diffusivity and raw T2 signal with no diffusion weighting, were extracted as multiple parameters from diffusion tensor imaging. We developed a two-level clustering approach for a self-organizing map followed by the K-means algorithm to enable unsupervised clustering of a large number of input vectors with the seven features for the whole brain. The vectors were grouped by the self-organizing map as protoclusters, which were classified into the smaller number of clusters by K-means to make a voxel-based diffusion tensor-based clustered image. Furthermore, we also determined if the diffusion tensor-based clustered image was really helpful for predicting pre-operative glioma grade in a supervised manner. The ratio of each class in the diffusion tensor-based clustered images was calculated from the regions of interest manually traced on the diffusion tensor imaging space, and the common logarithmic ratio scales were calculated. We then applied support vector machine as a classifier for distinguishing between low- and high-grade gliomas. Consequently, the sensitivity, specificity, accuracy and area under the curve of receiver operating characteristic curves from the 16-class diffusion tensor-based clustered images that showed the best performance for differentiating high- and low-grade gliomas were 0.848, 0.745, 0.804 and 0.912, respectively. Furthermore, the log-ratio value of each class of the 16-class diffusion tensor-based clustered images was compared between low- and high-grade gliomas, and the log-ratio values of classes 14, 15 and 16 in the high-grade gliomas were significantly higher than those in the low-grade gliomas (p < 0.005, p < 0.001 and p < 0.001, respectively). These classes comprised different patterns of the seven diffusion tensor imaging-based parameters. The results suggest that the multiple diffusion tensor imaging-based parameters from the voxel-based diffusion tensor-based clustered images can help differentiate between low- and high-grade gliomas.

Alăturați-vă paginii
noastre de facebook

Cea mai completă bază de date cu plante medicinale susținută de știință

  • Funcționează în 55 de limbi
  • Cure pe bază de plante susținute de știință
  • Recunoașterea ierburilor după imagine
  • Harta GPS interactivă - etichetați ierburile în locație (în curând)
  • Citiți publicațiile științifice legate de căutarea dvs.
  • Căutați plante medicinale după efectele lor
  • Organizați-vă interesele și rămâneți la curent cu noutățile de cercetare, studiile clinice și brevetele

Tastați un simptom sau o boală și citiți despre plante care ar putea ajuta, tastați o plantă și vedeți boli și simptome împotriva cărora este folosit.
* Toate informațiile se bazează pe cercetări științifice publicate

Google Play badgeApp Store badge