Romanian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Free Radical Biology and Medicine 2020-Feb

Ailanthone increases oxidative stress in CDDP-resistant ovarian and bladder cancer cells by inhibiting of Nrf2 and YAP expression through a post-translational mechanism.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Linkul este salvat în clipboard
Marie Cucci
Margherita Grattarola
Chiara Dianzani
Giovanna Damia
Francesca Ricci
Antonella Roetto
Francesco Trotta
Giuseppina Barrera
Stefania Pizzimenti

Cuvinte cheie

Abstract

Chemoresistance represents one of the main obstacles in treating several types of cancer, including bladder and ovarian cancers, and it is characterized by an increase of cellular antioxidant potential. Nrf2 and YAP proteins play an important role in increasing chemoresistance and in inducing antioxidant enzymes. It has been reported that Ailanthone (Aila), a compound extracted from the Ailanthus Altissima, has an anticancer activity toward several cancer cell lines, including chemo-resistant cell lines. We have examined the effect of Aila on proliferation, migration and expression of Nrf2 and YAP proteins in A2780 (CDDP-sensitive) and A2780/CP70 (CDDP-resistant) ovarian cancer cells. Furthermore, to clarify the mechanism of Aila action we extended our studies to sensitive and CDDP-resistant 253J-BV bladder cancer cells, which have been used in a previous study on the effect of Aila. Results demonstrated that Aila exerted an inhibitory effect on growth and colony formation of sensitive and CDDP-resistant ovarian cancer cells and reduced oriented cell migration with higher effectiveness in CDDP resistant cells. Moreover, Aila strongly reduced Nrf2 and YAP protein expression and reduced the expression of the Nrf2 target GSTA4, and the YAP/TEAD target survivin. In CDDP-resistant ovarian and bladder cancer cells the intracellular oxidative stress level was lower with respect to the sensitive cells. Moreover, Aila treatment further reduced the superoxide anion content of CDDP-resistant cells in correlation with the reduction of Nrf2 and YAP proteins. However, Aila treatment increased Nrf2 and YAP mRNA expression in all cancer cell lines. The inhibition of proteolysis by MG132, a proteasoma inhibitor, restored Nrf2 and YAP protein expressions, suggesting that the Aila effect was at post-translational level. In accordance with this observation, we found an increase of the Nrf2 inhibitor Keap1, a reduction of p62/SQSTM1, a Nrf2 target which leads Keap1 protein to the autophagic degradation, and a reduction of P-YAP. Moreover, UCHL1 deubiquitinase expression, which was increased in bladder and ovarian resistant cells, was down-regulated by Aila treatment. In conclusion we demonstrated that Aila can reduce proliferation and migration of cancer cells through a mechanism involving a post translational reduction of Nrf2 and YAP proteins which, in turn, entailed an increase of oxidative stress particularly in the chemoresistant lines.

Alăturați-vă paginii
noastre de facebook

Cea mai completă bază de date cu plante medicinale susținută de știință

  • Funcționează în 55 de limbi
  • Cure pe bază de plante susținute de știință
  • Recunoașterea ierburilor după imagine
  • Harta GPS interactivă - etichetați ierburile în locație (în curând)
  • Citiți publicațiile științifice legate de căutarea dvs.
  • Căutați plante medicinale după efectele lor
  • Organizați-vă interesele și rămâneți la curent cu noutățile de cercetare, studiile clinice și brevetele

Tastați un simptom sau o boală și citiți despre plante care ar putea ajuta, tastați o plantă și vedeți boli și simptome împotriva cărora este folosit.
* Toate informațiile se bazează pe cercetări științifice publicate

Google Play badgeApp Store badge