Romanian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Bioorganic Chemistry 2020-Aug

Synthesis, in-vitro, in-vivo anti-inflammatory activities and molecular docking studies of acyl and salicylic acid hydrazide derivatives

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Linkul este salvat în clipboard
Abida Munir
Adil Khushal
Kiran Saeed
Abdul Sadiq
Rahim Ullah
Gowhar Ali
Zaman Ashraf
Ehsan Mughal
Muhammad Jan
Umer Rashid

Cuvinte cheie

Abstract

Over the course of time several drugs have been synthesized and are available in market for the treatment of inflammation. However, they were unable to cure effectively and associated with side effects. To effectively deal with such diseases, heterocycles and their derivatives have gained their special position. For this reason 1,3,4-oxadiazole (15-16), 1,2,4-triazole (17-18), Schiff base (19-24) and 3,5-disubstituted pyrazole (25) derivatives were synthesized starting from salicylic acid and acyl acid hydrazides (12-14) as COX-1 and COX-2 inhibitors. In vivo anti-inflammatory activities were also tested by carrageenan-induced mice paw edema against albino mice of any sex. Structures of all the synthesized compounds were confirmed by FT-IR and 1H NMR analysis. Schiff base derivative of 4-amiontirazole (24) with IC50 value of 1.76 ± 0.05 (COX-2) and 117.8 ± 2.59 emerged as potent COX-2 inhibitor. Furthermore, we also performed in-vivo anti-inflammatory investigations by using carrageenan induced paw edema test. From in-vivo anti-inflammatory activities, it was found that after 1 h the maximum percentage inhibition 15.8% was observed by compound 14 which is comparable with that of the standard drug followed by the compound 18 with percentage inhibition of 10.5%. After 3 h, the maximum percentage inhibition was observed by compound 18 with 22.2% and compound 14 with 16.7%. After 5 h the maximum percentage inhibition was observed by compound 18 with 29.4% followed by compound 16 with 23.5%. We further explore the mechanism of the inhibition by using docking simulations. Docking studies revealed that the selective COX-2 inhibitors established interactions with additional COX-2 enzyme pocket residues.

Keywords: Anti-inflammatory activities; Oxadiazole; Pyrazole; Salicylic acid.

Alăturați-vă paginii
noastre de facebook

Cea mai completă bază de date cu plante medicinale susținută de știință

  • Funcționează în 55 de limbi
  • Cure pe bază de plante susținute de știință
  • Recunoașterea ierburilor după imagine
  • Harta GPS interactivă - etichetați ierburile în locație (în curând)
  • Citiți publicațiile științifice legate de căutarea dvs.
  • Căutați plante medicinale după efectele lor
  • Organizați-vă interesele și rămâneți la curent cu noutățile de cercetare, studiile clinice și brevetele

Tastați un simptom sau o boală și citiți despre plante care ar putea ajuta, tastați o plantă și vedeți boli și simptome împotriva cărora este folosit.
* Toate informațiile se bazează pe cercetări științifice publicate

Google Play badgeApp Store badge