Romanian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

camellia amplexicaulis/albumină

Linkul este salvat în clipboard
Pagină 1 din 80 rezultate
Epigallocatechin-gallate (EGCG) is the main polyphenol ingredient of green tea. This compound is a strong antioxidant and oxidizes easily. Numerous studies demonstrated its beneficial effects on the human health, for example its anticancer and anti-inflammatory activity. In the body, EGCG is

Effect of (-)-epigallocatechin gallate on the fibrillation of human serum albumin.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Human serum albumin (HSA), the most abundant plasma protein in the human body is known to form fibrils under partial denaturing conditions. Natural polyphenols are known to interact with HSA and some polyphenols have been shown to be potent inhibitors of amyloid fibrillation. (-)-Epigallocatechin
2-Phenylchromone (2PHE) is a flavone, found in cereals and herbs, indispensable in the human diet. Its chemical structure is the basis of all flavonoids present in black and green tea, soybean, red fruits and so on. Although offering such nutritional value, it still requires a molecular approach to

Complexes of green tea polyphenol, epigalocatechin-3-gallate, and 2S albumins of peanut.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
2S albumins of peanuts are seed storage proteins, highly homologous in structure and described as major elicitors of anaphylactic reactions to peanut (allergens Ara h 2 and Ara h 6). Epigallocatechin-3-gallate (EGCG) is the most biologically potent polyphenol of green tea. Non-covalent interactions

Evaluation of non-covalent interactions between serum albumin and green tea catechins by affinity capillary electrophoresis.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
The natural antioxidant-associated biological responses appear contradictory since biologically active dosages registered in vitro experiments are considerably higher if compared to concentrations found in vivo. The recent research indicates that natural antioxidants, including the major catechins

Albumin stabilizes (-)-epigallocatechin gallate in human serum: binding capacity and antioxidant property.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
(-)-Epigallocatechin gallate (EGCg) is the major component of green tea and is known to show strong biological activity, although it can be easily oxidized under physiological conditions. In this study, we indicate that EGCg is stable in human serum and that human serum albumin (HSA) stabilizes EGCg

Influence of the galloyl moiety in tea catechins on binding affinity for human serum albumin.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
The major catechins of green tea extract are (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECg), and (-)-epigallocatechin gallate (EGCg). Recent research has indicated that catechins form complexes with human serum albumin (HSA) in blood, and differences in their binding

Oxidative deamination of benzylamine and lysine residue in bovine serum albumin by green tea, black tea, and coffee.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Oxidative deamination by various polyphenolic compounds is presumed to be due to the oxidative conversion of polyphenols to the corresponding quinones through autoxidation. Here we examined the oxidative deamination by the polyphenol-rich beverages green tea, black tea, and coffee at a physiological

Role of the flavan-3-ol and galloyl moieties in the interaction of (-)-epigallocatechin gallate with serum albumin.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
The principal green tea polyphenol, (-)-epigallocatechin-3-O-gallate (EGCg), may provide chemoprotection against conditions ranging from cardiovascular disease to cancer. Binding to plasma proteins stabilizes EGCg during its transport to targeted tissues. This study explored the details EGCg binding
Green tea has attracted great interest as a cancer prevention agent. Interactions of tea polyphenols with serum albumin may influence the efficacy of drugs. The interactions of (-)-epigallocatechin-3-gallate (EGCG), (-)-epicatechin-3-gallate (ECG), and tegafur (TF) alone or in combination with human

Structural characteristics of green tea catechins for formation of protein carbonyl in human serum albumin.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Catechins are polyphenolic antioxidants found in green tea leaves. Recent studies have reported that various polyphenolic compounds, including catechins, cause protein carbonyl formation in proteins via their pro-oxidant actions. In this study, we evaluate the formation of protein carbonyl in human
Catechins are the major polyphenols in green tea leaves. Recent studies have suggested that the catechins form complexes with HSA for transport in human blood, and their binding affinity for albumin is believed to modulate their bioavailability. In this study, the binding affinities of catechins and

An investigation into the altered binding mode of green tea polyphenols with human serum albumin on complexation with copper.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Green tea is rich in several polyphenols, such as (-)-epicatechin-3-gallate (ECG), (-)-epigallocatechin (EGC), and (-)-epigallocatechin-3-gallate (EGCG). The biological importance of these polyphenols led us to study the major polyphenol EGCG with human serum albumin (HSA) in an earlier study. In
(-)-Epigallocatechin-3-O-gallate (EGCG), the most abundant polyphenol in green tea, mediates the oxidative modification of proteins, generating protein carbonyls. However, the underlying molecular mechanism remains unclear. Here we analyzed the EGCG-derived intermediates generated upon incubation
The health benefits stemming from green tea are well known, but the exact mechanism of its biological activity is not elucidated. Epicatechin (EC) and epicatechin gallate (ECG) are two dietary catechins ubiquitously present in green tea. Serum albumins functionally carry these catechins through the
Alăturați-vă paginii
noastre de facebook

Cea mai completă bază de date cu plante medicinale susținută de știință

  • Funcționează în 55 de limbi
  • Cure pe bază de plante susținute de știință
  • Recunoașterea ierburilor după imagine
  • Harta GPS interactivă - etichetați ierburile în locație (în curând)
  • Citiți publicațiile științifice legate de căutarea dvs.
  • Căutați plante medicinale după efectele lor
  • Organizați-vă interesele și rămâneți la curent cu noutățile de cercetare, studiile clinice și brevetele

Tastați un simptom sau o boală și citiți despre plante care ar putea ajuta, tastați o plantă și vedeți boli și simptome împotriva cărora este folosit.
* Toate informațiile se bazează pe cercetări științifice publicate

Google Play badgeApp Store badge