Romanian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

chalcone synthase/porumb

Linkul este salvat în clipboard
ArticoleStudii cliniceBrevete
Pagină 1 din 17 rezultate
The flavonoid pigment pathway in plants has been used as a model system for studying gene regulatory mechanisms. C2-Idf is a stable dominant mutation of the chalcone synthase gene, c2, which encodes the first dedicated enzyme in this biosynthetic pathway of maize. Homozygous C2-Idf plants show no
Two chalcone synthase genes in maize have been cloned and molecularly characterized to be the C2 and the Whp (white pollen) locus. The two genes have highly homologous exon sequences but differ considerably in sequences 5' upstream and 3' downstream of the coding region, as well as in their introns.

The 17-kb Tam1 element of Antirrhinum majus induces a 3-bp duplication upon integration into the chalcone synthase gene.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
The DNA sequence of the termini and the flanking regions of the 17-kb transposable element Tam1 was determined. Tam1 is integrated in the chalcone synthase gene of the niv-53 mutant of Antirrhinum majus. The element has a 13-bp perfect inverted repeat at its termini and appears to induce a 3-bp

Quantitative trait loci for maysin synthesis in maize (Zea mays L.) lines selected for high silk maysin content.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Maysin is a naturally occurring C-glycosyl flavone found in maize (Zea mays L.) silk tissue that confers resistance to corn earworm (Helicoverpa zea, Boddie). Recently, two new maize populations were derived for high silk maysin. The two populations were named the exotic populations of maize (EPM)
Deschampsiaantarctica inhabits the maritime territory of Antarctica and South Patagonia. It grows under very harsh environmental conditions. The survival of this species in low freezing temperatures and under high levels of UV-B radiation may constitute some of the most remarkable adaptive plant

Genome-Wide Identification, Characterization and Expression Analysis of the Chalcone Synthase Family in Maize.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Members of the chalcone synthase (CHS) family participate in the synthesis of a series of secondary metabolites in plants, fungi and bacteria. The metabolites play important roles in protecting land plants against various environmental stresses during the evolutionary process. Our research was

Silencing CHALCONE SYNTHASE in Maize Impedes the Incorporation of Tricin into Lignin and Increases Lignin Content.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Lignin is a phenolic heteropolymer that is deposited in secondary-thickened cell walls, where it provides mechanical strength. A recent structural characterization of cell walls from monocot species showed that the flavone tricin is part of the native lignin polymer, where it is hypothesized to
Petunia line Mitchell [MP, Petunia axillaris × (P. axillaris × P. hybrida)] and Eustoma grandiflorum (lisianthus) plants were produced containing a transgene for over-expression of the R2R3-MYB transcription factor [TF; ROSEA1 (ROS1)] that up-regulates flavonoid biosynthesis in Antirrhinum majus.

Viviparous-1 mutation in maize conditions pleiotropic enzyme deficiencies in the aleurone.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
The viviparous-1 (vp1) mutation in maize (Zea mays L.) conditions a unique pleiotropic phenotype: premature germination of the embryo and failure to synthesize anthocyanin (flavonoid) pigments in the aleurone. By using a B-A translocation, it is possible to analyze the basis for the anthocyaninless
The regulatory anthocyanin loci, an1, an2, an4 and an11 of Petunia hybrida, and r and c1 from Zea mays, control transcription of different sets of target genes. Both an2 and c1 encode a MYB-type protein. This study reports the isolation of a P. hybrida gene, jaf13, encoding a basic helix-loop-helix

Association analysis of candidate genes for maysin and chlorogenic acid accumulation in maize silks.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Two compounds, the C-glycosyl flavone maysin and the phenylpropanoid product chlorogenic acid (CGA), have been implicated in corn earworm (Helicoverpa zea Boddie) resistance in maize (Zea mays L.). Previous quantitative trait locus (QTL) analyses identified the pericarp color (p) locus, which
Mutations in the transparent testa (tt) loci abolish pigment production in Arabidopsis seed coats. The TT4, TT5, and TT3 loci encode chalcone synthase, chalcone isomerase, and dihydroflavonol 4-reductase, respectively, which are essential for anthocyanin accumulation and may form a macromolecular

Flavonoids promote haustoria formation in the root parasite triphysaria versicolor

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Parasitic plants in the Scrophulariaceae develop infective root structures called haustoria in response to chemical signals released from host-plant roots. This study used a simple in vitro assay to characterize natural and synthetic molecules that induce haustoria in the facultative parasite

Flavonoid synthesis in Petunia hybrida: partial characterization of dihydroflavonol-4-reductase genes.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
In this paper we describe the organization and expression of the genes encoding the flavonoid-biosynthetic enzyme dihydroflavonol-4-reductase (DFR) in Petunia hybrida. A nearly full-size DFR cDNA clone (1.5 kb), isolated from a corolla-specific cDNA library was compared at the nucleotide level with

Expression of anthocyanins and proanthocyanidins after transformation of alfalfa with maize Lc.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Three anthocyanin regulatory genes of maize (Zea mays; Lc, B-Peru, and C1) were introduced into alfalfa (Medicago sativa) in a strategy designed to stimulate the flavonoid pathway and alter the composition of flavonoids produced in forage. Lc constructs included a full-length gene and a gene with a
Alăturați-vă paginii
noastre de facebook

Cea mai completă bază de date cu plante medicinale susținută de știință

  • Funcționează în 55 de limbi
  • Cure pe bază de plante susținute de știință
  • Recunoașterea ierburilor după imagine
  • Harta GPS interactivă - etichetați ierburile în locație (în curând)
  • Citiți publicațiile științifice legate de căutarea dvs.
  • Căutați plante medicinale după efectele lor
  • Organizați-vă interesele și rămâneți la curent cu noutățile de cercetare, studiile clinice și brevetele

Tastați un simptom sau o boală și citiți despre plante care ar putea ajuta, tastați o plantă și vedeți boli și simptome împotriva cărora este folosit.
* Toate informațiile se bazează pe cercetări științifice publicate

Google Play badgeApp Store badge