Romanian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

l arginine/arabidopsis thaliana

Linkul este salvat în clipboard
ArticoleStudii cliniceBrevete
12 rezultate

Molecular and biochemical characterization of a serine racemase from Arabidopsis thaliana.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
A cDNA encoding a homolog of mammalian serine racemase, a unique enzyme in eukaryotes, was isolated from Arabidopsis thaliana and expressed in Escherichia coli cells. The gene product, of which the amino acid residues for binding pyridoxal 5'-phosphate (PLP) are conserved in this as well as

Exogenous auxin-induced NO synthesis is nitrate reductase-associated in Arabidopsis thaliana root primordia.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Nitric oxide (NO) functions in various physiological and developmental processes in plants. However, the source of this signaling molecule in the diversity of plant responses is not well understood. It is known that NO mediates auxin-induced adventitious and lateral root (LR) formation. In this

Involvement of nitrate reductase (NR) in osmotic stress-induced NO generation of Arabidopsis thaliana L. roots.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Nitric oxide (NO) is undoubtedly a potential signal molecule in diverse developmental processes and stress responses. Despite our extensive knowledge about the role of NO in physiological and stress responses, the source of this gaseous molecule is still unresolved. The aim of this study was to

PsbY, a novel manganese-binding, low-molecular-mass protein associated with photosystem II.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
We describe two related manganese-binding polypeptides with L-arginine metabolizing enzyme activity that can be detected as distinct components (designated PsbY-A1 and PsbY-A2, previously called L-AME) in membranes containing Photosystem II (PS II) from spinach. The polypeptides are bitopic and
We investigated the production and function of nitric oxide (NO) in Arabidopsis thaliana leaf discs as well as whole plants elicited by oligogalacturonides (OGs). Using genetic, biochemical and pharmacological approaches, we provided evidence that OGs induced a Nitrate Reductase (NR)-dependent NO

Transcription factor sensor system for parallel quantification of metabolites on-chip.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Steadily growing demands for identification and quantification of cellular metabolites in higher throughput have brought a need for new analytical technologies. Here, we developed a synthetic biological sensor system for quantifying metabolites from biological cell samples. For this, bacterial
In response to iron (Fe) deficiency, dicots employ a reduction-based mechanism by inducing ferric-chelate reductase (FCR) at the root plasma membrane to enhance Fe uptake. However, the signal pathway leading to FCR induction is still unclear. Here, we found that the Fe-deficiency-induced increase of
Lichens are poikilohydrous symbiotic associations between a fungus, photosynthetic partners, and bacteria. They are tolerant to repeated desiccation/rehydration cycles and adapted to anhydrobiosis. Nitric oxide (NO) is a keystone for stress tolerance of lichens; during lichen rehydration, NO limits

SNF1-related protein kinases type 2 are involved in plant responses to cadmium stress.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Cadmium ions are notorious environmental pollutants. To adapt to cadmium-induced deleterious effects plants have developed sophisticated defense mechanisms. However, the signaling pathways underlying the plant response to cadmium are still elusive. Our data demonstrate that SnRK2s (for SNF1-related

Nitric oxide affects seed oil accumulation and fatty acid composition through protein S-nitrosation

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Nitric oxide (NO) has been implicated as a key signaling molecule involved in a wide spectrum of plant developmental and stress responses. Here, we found that NO also played important role in seed oil content and fatty acid composition. RNAi silencing Arabidopsis thaliana S-nitrosoglutathione

Salt stress reduces root meristem size by nitric oxide-mediated modulation of auxin accumulation and signaling in Arabidopsis.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
The development of the plant root system is highly plastic, which allows the plant to adapt to various environmental stresses. Salt stress inhibits root elongation by reducing the size of the root meristem. However, the mechanism underlying this process remains unclear. In this study, we explored

Phevamine A, a small molecule that suppresses plant immune responses.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Bacterial plant pathogens cause significant crop damage worldwide. They invade plant cells by producing a variety of virulence factors, including small-molecule toxins and phytohormone mimics. Virulence of the model pathogen Pseudomonas syringae pv. tomato DC3000 (Pto) is regulated in part by the
Alăturați-vă paginii
noastre de facebook

Cea mai completă bază de date cu plante medicinale susținută de știință

  • Funcționează în 55 de limbi
  • Cure pe bază de plante susținute de știință
  • Recunoașterea ierburilor după imagine
  • Harta GPS interactivă - etichetați ierburile în locație (în curând)
  • Citiți publicațiile științifice legate de căutarea dvs.
  • Căutați plante medicinale după efectele lor
  • Organizați-vă interesele și rămâneți la curent cu noutățile de cercetare, studiile clinice și brevetele

Tastați un simptom sau o boală și citiți despre plante care ar putea ajuta, tastați o plantă și vedeți boli și simptome împotriva cărora este folosit.
* Toate informațiile se bazează pe cercetări științifice publicate

Google Play badgeApp Store badge