Romanian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

linum usitatissimum/triacylglycerol

Linkul este salvat în clipboard
ArticoleStudii cliniceBrevete
10 rezultate
Polyunsaturated fatty acids (PUFAs) such as α-linolenic acid (ALA, 18:3Δ9cis,12cis,15cis ) have high nutritional and industrial values. In oilseed crops, PUFAs are synthesized on phosphatidylcholine (PC) and accumulated in triacylglycerol (TAG). Therefore,
In plant, unusual fatty acids are produced by a limited number of species. The industrial benefits of these unusual structures have led several groups to study their production in transgenic plants. Their research results led to very modest accumulation in seeds which was largely due to a limited

Oil synthesis in vitro in microsomal membranes from developing cotyledons of Linum usitatissimum L.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Microsomal preparations from developing linseed (Linum usitatissimum L.) cotyledons catalyzed i) acyl exchange between acyl-CoA and position 2 of sn-phosphatidylcholine, ii) acylation of sn-glycerol 3-phosphate to yield phosphatidic acid, and iii) the utilisation of phosphatidic acid in the
The oil from flax (Linum usitatissimum L.) has high amounts of α-linolenic acid (ALA; 18:3(cis)(Δ9,12,15)) and is one of the richest sources of omega-3 polyunsaturated fatty acids (ω-3-PUFAs). To produce ∼57% ALA in triacylglycerol (TAG), it is likely that flax contains enzymes that can efficiently
Biosynthesis of alpha-linolenate was investigated in developing embryos of the high-linolenic (45%) linseed cv. Glenelg, two mutant lines (M1589 and M1722) having reduced linolenic acid content (30%), and a very low linolenic (2%) genotype (Zero) obtained by recombination of the M1589 and M1722

Characterization of the seed and leaf lipids of high and low linolenic acid flax genotypes.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
The total seed lipids of four flax (Linum usitatissimum) genotypes, differing markedly in their acyl composition, were extracted and fractionated using column, preparative, and thin-layer chromatography. In the total lipid extract of seeds, the lower linolenate content of the cultivar Glenelg (39.1%
Seed oil from flax (Linum usitatissimum) is enriched in α-linolenic acid (ALA; 18:3Δ9cis,12cis,15cis ), but the biochemical processes underlying the enrichment of flax seed oil with this polyunsaturated fatty acid are not fully elucidated. Here, a potential process involving the catalytic actions of

Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Omega6- and omega3-polyunsaturated C20 fatty acids represent important components of the human diet. A more regular consumption and an accordingly sustainable source of these compounds are highly desirable. In contrast with the very high levels to which industrial fatty acids have to be enriched in
1. The average oil-body diameter in intact cells of developing linseed (Linum usitatissimum) and safflower (Carthamus tinctorius) cotyledons was similar (about 1.4 micrometer), and there was little change in size after oil bodies were isolated and repeatedly washed. 2. The glycerolipid composition
Seed oils of flax (Linum usitatissimum L.) and many other plant species contain substantial amounts of polyunsaturated fatty acids (PUFAs). Phosphatidylcholine (PC) is the major site for PUFA synthesis. The exact mechanisms of how these PUFAs are channeled from PC into triacylglycerol (TAG) needs to
Alăturați-vă paginii
noastre de facebook

Cea mai completă bază de date cu plante medicinale susținută de știință

  • Funcționează în 55 de limbi
  • Cure pe bază de plante susținute de știință
  • Recunoașterea ierburilor după imagine
  • Harta GPS interactivă - etichetați ierburile în locație (în curând)
  • Citiți publicațiile științifice legate de căutarea dvs.
  • Căutați plante medicinale după efectele lor
  • Organizați-vă interesele și rămâneți la curent cu noutățile de cercetare, studiile clinice și brevetele

Tastați un simptom sau o boală și citiți despre plante care ar putea ajuta, tastați o plantă și vedeți boli și simptome împotriva cărora este folosit.
* Toate informațiile se bazează pe cercetări științifice publicate

Google Play badgeApp Store badge