Romanian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

myo inositol/cancer mamar

Linkul este salvat în clipboard
ArticoleStudii cliniceBrevete
Pagină 1 din 29 rezultate

Elevated prefrontal myo-inositol and choline following breast cancer chemotherapy.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Breast cancer survivors are at increased risk for cognitive dysfunction, which reduces quality of life. Neuroimaging studies provide critical insights regarding the mechanisms underlying these cognitive deficits as well as potential biologic targets for interventions. We measured several metabolite
OBJECTIVE Mammographic breast density is a recognized risk factor for breast cancer. The causes that lead to the proliferation of the glandular breast tissue and, therefore, to an increase of breast density are still unclear. However, a treatment strategy to reduce the mammary density may bring

Lithium-stimulated proliferation and alteration of phosphoinositide metabolites in MCF-7 human breast cancer cells.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Lithium, which is used to treat bipolar psychiatric disorders, can stimulate proliferation of a number of cells in tissue culture. Proliferation of MCF-7 human breast cancer cells, which also respond to EGF and estrogens, was stimulated by LiCl (1-5 mM) within the concentration range that is
Metabolites linked to changes in choline kinase-α (CK-α) expression and drug resistance, which contribute to survival and autophagy mechanisms, are attractive targets for breast cancer therapies. We previously reported that autophagy played a causative role in driving tamoxifen (TAM) resistance of

Specificity of choline metabolites for in vivo diagnosis of breast cancer using 1H MRS at 1.5 T.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
The purpose was to determine if in vivo proton magnetic resonance spectroscopy ((1)H MRS) at 1.5 T can accurately provide the correct pathology of breast disease. Forty-three asymptomatic volunteers including three lactating mothers were examined and compared with 21 breast cancer patients.

Radiosynthesis and in vivo tumor uptake of 2-deoxy-2-[(18)F]fluoro-myo-inositol.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Inositols play an important role in membrane lipid metabolism and mitogenic signaling of most cancer cells. There is paucity of data on the distribution of radiolabelled inositols. Based on work previously carried out on 1-deoxy-1-[(18)F]fluoro-scyllo-inositol ([(18)F]2), we began a program of work

Design, synthesis and biological evaluation of new Myo-inositol derivatives as potential RAS inhibitors

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Ras is a small family of GTPases that control numerous cellular functions like cell proliferation, growth, survival, gene expression, and is closely engaged in cancer pathogenesis. The ras-targeted methodology entails a holy grail in oncology. Nevertheless, there are no specific molecules reported

alpha-Trinositol inhibits FGF-stimulated growth of smooth muscle and breast cancer cells.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
alpha-Trinositol (d-myo-inositol-1,2,6-trisphosphate), an isomer of the intracellular messenger IP(3), has been studied for its anti-inflammatory and other effects in animal experiments and in human. The mechanisms of action remain unknown. Several human pathologies are associated with uncontrolled
To date, no targeted therapies are available to treat triple negative breast cancer (TNBC), while other breast cancer subtypes are responsive to current therapeutic treatment. Metabolomics was conducted to reveal differences in two hormone receptor-negative TNBC cell lines and two hormone

Regulation of myo-inositol biosynthesis by p53-ISYNA1 pathway.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
In response to various cellular stresses, p53 exerts its tumor suppressive effects such as apoptosis, cell cycle arrest, and senescence through the induction of its target genes. Recently, p53 was shown to control cellular homeostasis by regulating energy metabolism, glycolysis, antioxidant effect,

Merging transcriptomics and metabolomics--advances in breast cancer profiling.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
BACKGROUND Combining gene expression microarrays and high resolution magic angle spinning magnetic resonance spectroscopy (HR MAS MRS) of the same tissue samples enables comparison of the transcriptional and metabolic profiles of breast cancer. The aim of this study was to explore the potential of

Visualizing metabolic changes in breast-cancer tissue using 1H-NMR spectroscopy and self-organizing maps.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
In-vitro NMR spectroscopic examinations of tissue extracts can be combined with appropriate pattern-recognition and visualization techniques in order to monitor characteristic metabolic differences between tissue classes. In the present study, such techniques are applied to a set of 88 breast-tissue
We have demonstrated previously that D-myo-inositol 4-(hexadecyloxy)-3(S)-methoxybutanephosphonate (C4-PI), an isosteric phosphonate analog of phosphatidylinositol developed to inhibit inositol lipid metabolism, was unable to inhibit phosphatidylinositol (PI) 3-kinase activity. We now report the

CEST-MRI detects metabolite levels altered by breast cancer cell aggressiveness and chemotherapy response.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Chemical exchange saturation transfer (CEST) is an MRI contrast mechanism that detects the exchange of protons from distinct hydroxyl, amine, and amide groups to tissue water through the transfer of signal loss, with repeated exchange enhancing their effective signal. We applied CEST to detect

Glucose metabolism in drug-sensitive and drug-resistant human breast cancer cells monitored by magnetic resonance spectroscopy.

Numai utilizatorii înregistrați pot traduce articole
Log In / Înregistrare
Glucose utilization and lactate production have been monitored as a function of time using 13C magnetic resonance spectroscopy and [13C1]-glucose with perfused wild type MCF-7 human breast cancer cells and a drug-resistant (AdrR) cell line derived from them. Compared to wild type cells, AdrR cells
Alăturați-vă paginii
noastre de facebook

Cea mai completă bază de date cu plante medicinale susținută de știință

  • Funcționează în 55 de limbi
  • Cure pe bază de plante susținute de știință
  • Recunoașterea ierburilor după imagine
  • Harta GPS interactivă - etichetați ierburile în locație (în curând)
  • Citiți publicațiile științifice legate de căutarea dvs.
  • Căutați plante medicinale după efectele lor
  • Organizați-vă interesele și rămâneți la curent cu noutățile de cercetare, studiile clinice și brevetele

Tastați un simptom sau o boală și citiți despre plante care ar putea ajuta, tastați o plantă și vedeți boli și simptome împotriva cărora este folosit.
* Toate informațiile se bazează pe cercetări științifice publicate

Google Play badgeApp Store badge