Russian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Pharmacokinetics and Pharmacodynamics 2018-Oct

An item response theory based integrated model of headache, nausea, photophobia, and phonophobia in migraine patients.

Только зарегистрированные пользователи могут переводить статьи
Войти Зарегистрироваться
Ссылка сохраняется в буфер обмена
Dongwoo Chae
Kyungsoo Park

Ключевые слова

абстрактный

This study developed an integrated model of severity scores of migraine headache and the incidence of nausea, photophobia, and phonophobia to predict the natural time course of migraine symptoms, which are likely to occur by a common disease progression mechanism. Data were acquired from two phase 3 clinical trials conducted during the development of eletriptan. Only the placebo arm was used for analysis. A conventional proportional odds model was compared with an item response theory (IRT) based approach. Results suggested that the IRT based approach led to a better model fit, successfully revealing the difference in relief rates among different symptoms, which was the fastest in phonophobia and the slowest in headache. Simulation with the developed model suggested that using headache scores at 4 h post-dose attained greatest statistical power, yielding sample size of 100 per arm given drug effect of 40%, as compared to that of 200 per arm when 2 h post-dose scores were used as in the original eletriptan protocol. This work demonstrated the usefulness of an IRT based model as applied to analyzing multidimensional migraine symptoms and designing clinical trials. Our model can be similarly applied to analyzing other multiple endpoints sharing a common underlying mechanism.

Присоединяйтесь к нашей
странице facebook

Самая полная база данных о лекарственных травах, подтвержденная наукой

  • Работает на 55 языках
  • Травяные лекарства, подтвержденные наукой
  • Распознавание трав по изображению
  • Интерактивная карта GPS - отметьте травы на месте (скоро)
  • Прочтите научные публикации, связанные с вашим поиском
  • Ищите лекарственные травы по их действию
  • Организуйте свои интересы и будьте в курсе новостей исследований, клинических испытаний и патентов

Введите симптом или заболевание и прочтите о травах, которые могут помочь, введите лекарство и узнайте о болезнях и симптомах, против которых оно применяется.
* Вся информация основана на опубликованных научных исследованиях.

Google Play badgeApp Store badge