Russian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Disease 2005-Jun

First Outbreak of Bacterial Leaf Spot Caused by Xanthomonas campestris on Canola in Argentina.

Только зарегистрированные пользователи могут переводить статьи
Войти Зарегистрироваться
Ссылка сохраняется в буфер обмена
S Gaetán
N López

Ключевые слова

абстрактный

Canola (Brassica napus) is an alternative crop to wheat in Argentina and ~16,000 ha are grown commercially in southern Buenos Aires Province. During 2003, experimental field plots of canola plants located at Agronomy Faculty, University of Buenos Aires, in Buenos Aires were severely damaged by a bacterial leaf spot. Average disease incidence across 25 2- to 5-month-old canola cultivars was 58% (range = 27 to 89%). During 2004, identical infection associated with blackened veins (8 to 12% of plants) were found in two commercial fields and experimental crops (rosette and flowering stages) in Tres Arroyos in southern Buenos Aires Province. Symptoms observed on adaxial surfaces consisted of v-shaped necrotic lesions on leaf margin surrounded by yellow halos. Yellow bacterial ooze was found on young lesions. The advanced phases of the disease included lesion enlargement, foliar chlorosis, and death of leaves. The disease developed from the lower leaves to the apex, resulting in complete leaf necrosis and defoliation. Ten samples (five plants per sample) with lesions were arbitrarily collected from 2003 to 2004 from commercial and experimental canola crops. Diseased leaf tissue was surface sterilized in 0.50% sodium hypochlorite for 30 s and rinsed in sterile distilled water (SDW). Leaf sections were macerated in SDW, and the extract was streaked onto nutrient agar. Plates were incubated at 28°C for 3 days. Resultant colonies were yellow, mucoid, and convex. Gram-negative, aerobic, and rod-shaped bacteria were obtained. Eight strains were biochemically characterized using API 20NE (BioMerieux, Marcy l'Etoile, France) and identified as Xanthomonas campestris (1). Strains hydrolyzed starch, gelatine, and aesculin and were positive for catalase and negative for oxidase, nitrate reduction, ureasa, and triptophanase. Strains were capable of utilizing D-glucose, D-mannose, D-maltose, malic acid, and N-acetyl-glucosamine. X. campestris. pv. campestris 8004 was used as a reference strain (2). Pathogenicity and host range for three isolates were completed by injecting a bacterial suspension (107 CFU/ml) into leaves of 2-week-old canola plants (cvs. Eclipse, Impulse, Master, and Mistral), cabbage (B. oleracea var. capitata), and cauliflower (B. oleracea var. botrytis) seedlings (two-leaf stage). The experiment (four inoculated and two control plants for each cultivar and each strain) was conducted in a greenhouse at 24°C and 75% relative humidity. Inoculated and control plants were enclosed in a plastic bag for 48 h after inoculation. Chlorotic patches on the leaves followed by a dry, brown necrosis spread beyond the initial injected area were observed in inoculated plants 8 days after inoculation. Enlarged spots caused death of leaves. The pathogen was successfully reisolated. Control plants, inoculated only with SDW, remained symptomless. The results suggest that the bacterium represents a potential threat to canola production in Argentina and indicate the need for further study to identify the pathovar involved in canola leaf spots. To our knowledge, this is the first report of an outbreak of X. campestris causing leaf spot of canola and in which the bacteria affecting canola commercial crops was biochemically characterized and host range was carried out in Argentina. References: (1) N. W. Schaad et al. Laboratory Guide for Identification of Plant Pathogenic Bacteria. 3rd ed. The American Phytopathological Society, St. Paul. MN, 2001. (2) P. Turner et al. Mol. Gen. Genet. 195:101, 1984.

Присоединяйтесь к нашей
странице facebook

Самая полная база данных о лекарственных травах, подтвержденная наукой

  • Работает на 55 языках
  • Травяные лекарства, подтвержденные наукой
  • Распознавание трав по изображению
  • Интерактивная карта GPS - отметьте травы на месте (скоро)
  • Прочтите научные публикации, связанные с вашим поиском
  • Ищите лекарственные травы по их действию
  • Организуйте свои интересы и будьте в курсе новостей исследований, клинических испытаний и патентов

Введите симптом или заболевание и прочтите о травах, которые могут помочь, введите лекарство и узнайте о болезнях и симптомах, против которых оно применяется.
* Вся информация основана на опубликованных научных исследованиях.

Google Play badgeApp Store badge