Russian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Disease 2005-Feb

First Report of Foliar Infection of Maianthemum racemosum by Phytophthora ramorum.

Только зарегистрированные пользователи могут переводить статьи
Войти Зарегистрироваться
Ссылка сохраняется в буфер обмена
D Hüberli
K Ivors
A Smith
J Tse
M Garbelotto

Ключевые слова

абстрактный

In May 2003, Phytophthora ramorum S. Werres & A.W.A.M. de Cock was isolated from the leaf tips of a single plant of false Solomon's seal (Maianthemum racemosum (L.) Link, formely known as Smilacina racemosa (L.) Desf.), a native, herbaceous perennial of the Liliaceae family, at the Jack London State Park in Sonoma County, California. Affected leaves had cream-to-brown lesions on the tips that were delimited by a yellow chlorotic zone. Lesions on the stems were not observed. The isolate (American Type Culture Collection [ATCC], Manassas, VA, MYA-3280; Centraal Bureau voor Schimmelcultures, Baarn, the Netherlands, CBS 114391) was typical of P. ramorum with large chlamydospores and caduceus, semipapillate sporangia, and the sequence (GenBank Accession No. AY526570) of the internal transcribed spacer region of the rDNA matched those published previously (4). The site, from which wood rose (Rosa gymnocarpa) was recently identified as a host, is a mixed forest containing confirmed P. ramorum-infected coast redwood (Sequoia sempervirens), California bay laurel (Umbellularia californica), and tanoak (Lithocarpus densiflora) trees (2,3). Two leaves per asymptomatic, pesticide free, potted plant of false Solomon's seal were inoculated with zoospores of the P. ramorum isolate obtained from infected false Solomon's seal (1). Five plants were inoculated in trial 1, and the following day, three plants were inoculated in trial 2. A control leaf of each plant was dipped in sterile deionized water. Plants were enclosed in plastic bags, misted regularly with sterile distilled water, and maintained at 16 to 21°C in the greenhouse. In both trials, plants did not have lesions on the leaves after 16 days and were reinoculated on separate days for each trial with higher concentrations of zoospores (1 × 105 [trial 1] and 2 × 105 [trial 2] zoospores/ml). Cream-colored lesions, similar to those observed in the field, were evident 1 week after the second inoculation and stopped progressing in both trials by 17 days. Lesions starting from the leaf tips averaged 13 mm (range 8 to 24 mm) long, and P. ramorum was reisolated on Phytophthora-selective agar medium modified with 25 mg of pentachloronitrobenzene from 44% (trial 1) and 83% (trial 2) of all lesions (4). Control leaves had no lesions, and P. ramorum was not reisolated. Sporangia were not observed on any leaves when examined with the dissecting microscope. The fact that lesions developed only after a second inoculation with higher concentrations of zoospores, and these lesions stopped progressing after 17 days, suggests that false Solomon's seal is much less susceptible than other hosts such as western starflower (Trientalis latifolia) (1) and wood rose (2). To our knowledge, this is the first report of a plant from the Liliaceae as a natural host for P. ramorum, although Smilax aspersa was identified as being susceptible in artificial inoculations of detached leaves (E. Moralejo and L. Hernández, personal communication). False Solomon's seal is popular in the horticultural industry. References: (1) D. Hüberli et al. Plant Dis. 87:599, 2003. (2) D. Hüberli et al. Plant Dis. 88:430, 2004. (3) P. E. Maloney et al. Plant Dis. 86:1274, 2002. (4) D. M. Rizzo et al. Plant Dis. 86:205, 2002.

Присоединяйтесь к нашей
странице facebook

Самая полная база данных о лекарственных травах, подтвержденная наукой

  • Работает на 55 языках
  • Травяные лекарства, подтвержденные наукой
  • Распознавание трав по изображению
  • Интерактивная карта GPS - отметьте травы на месте (скоро)
  • Прочтите научные публикации, связанные с вашим поиском
  • Ищите лекарственные травы по их действию
  • Организуйте свои интересы и будьте в курсе новостей исследований, клинических испытаний и патентов

Введите симптом или заболевание и прочтите о травах, которые могут помочь, введите лекарство и узнайте о болезнях и симптомах, против которых оно применяется.
* Вся информация основана на опубликованных научных исследованиях.

Google Play badgeApp Store badge