Russian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Disease 2009-May

First Report of Leaf Spot of Dieffenbachia picta and Aglaonema commutatum Caused by Burkholderia gladioli in Argentina.

Только зарегистрированные пользователи могут переводить статьи
Войти Зарегистрироваться
Ссылка сохраняется в буфер обмена
A Alippi
A López

Ключевые слова

абстрактный

During May of 2008 (austral autumn), an uncharacterized disease was observed on Dieffenbachia picta (Lodd.) Schott and Aglaonema commutatum Schott in commercial greenhouses in Pontevedra (34°45'6″S, 58°42'42″W), Argentina. Affected plants showed irregular, brown lesions on leaves, approximately 15 to 20 mm in diameter, surrounded by water-soaked haloes that progressed inward from the margins. Water-soaked rotting symptoms were also observed in petioles. Disease incidence approached 80%. Abundant bacterial streaming was observed from lesions when examined at ×100. Bacteria consistently isolated from lesions formed cream-colored, glistening, convex colonies on sucrose peptone agar and produced a yellowish green, diffusible, nonfluorescent pigment on King's medium B. Four isolates from different symptomatic plants were selected for further study. All were aerobic, gram-negative rods that accumulated poly-β-hydroxybutyrate inclusions. In LOPAT tests, all induced a hypersensitive response in tobacco plants, caused soft rot of potato tubers, and were positive for levan, negative for arginine dihydrolase, and variable for oxidase. All isolates oxidized glucose, did not hydrolyze starch and were able to rot onion slices. Colonies developed at 41°C but not at 4°C. With the API 20NE test strips and database (bioMerieux, Buenos Aires, Argentina), all isolates matched (99% identity) Burkholderia cepacia, but their inability to metabolize cellobiose and sucrose further identified them as B. gladioli. For molecular identification, 23S rDNA was amplified by PCR using B. gladioli-specific primers LP1 and LP4, which yielded a 700-bp product (3), and PCR-restriction fragment length polymorphism of 16S rDNA using AluI (2). PCR products were identical to those from the type strain for B. gladioli, ICMP 3950, isolated from Gladiolus spp. that had been included in all tests for comparison. Pathogenicity was verified on D. picta and A. commutatum by spraying the plants with bacterial suspensions in sterile distilled water at 108 CFU/ml with and without wounding the leaves with a sterile needle and also by injection-infiltration of bacterial suspensions at 105 CFU/ml. In addition, another host plant, Gladiolus communis L., was inoculated in the same manner. Controls were sprayed or infiltrated with sterile distilled water. After 48 h in a humidity chamber, plants were kept at 25 ± 3°C in a greenhouse. In all hosts, symptoms were first detected 3 days after inoculation and lesions expanded to resemble natural infections within 4 to 7 days. All strains caused necrosis around the inoculation sites and lesions were identical to those induced by the ICMP reference strain. Bacteria were reisolated from each host tested and then the original and reisolated strains were compared by enterobacterial repetitive intergeneric consensus-PCR (1); DNA fingerprints of the reisolated strains were identical to those of the original strains, thereby fulfilling Koch's postulates. No lesions were observed on controls or on plants inoculated by spraying without wounding, suggesting that bacteria gain entry through wounds. On the basis of PCR and physiological tests the pathogen was identified as B. gladioli (2-4). To our knowledge, this is the first report of B. gladioli on Dieffenbachia and Aglaonema spp. References: (1) F. J. Louws et al. Appl. Environ. Microbiol. 60:2286, 1994. (2) C. Van Pelt et al. J. Clin. Microbiol. 37:2158, 1999. (3) P. W. Whitby et al. J. Clin. Microbiol. 38:282, 2000. (4) E. Yabuuchi et al. Microbiol. Immunol. 36:1251, 1992.

Присоединяйтесь к нашей
странице facebook

Самая полная база данных о лекарственных травах, подтвержденная наукой

  • Работает на 55 языках
  • Травяные лекарства, подтвержденные наукой
  • Распознавание трав по изображению
  • Интерактивная карта GPS - отметьте травы на месте (скоро)
  • Прочтите научные публикации, связанные с вашим поиском
  • Ищите лекарственные травы по их действию
  • Организуйте свои интересы и будьте в курсе новостей исследований, клинических испытаний и патентов

Введите симптом или заболевание и прочтите о травах, которые могут помочь, введите лекарство и узнайте о болезнях и симптомах, против которых оно применяется.
* Вся информация основана на опубликованных научных исследованиях.

Google Play badgeApp Store badge