Russian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Orthopaedic Research 2000-Jan

Osteogenic growth peptide normally stimulated by blood loss and marrow ablation has local and systemic effects on fracture healing in rats.

Только зарегистрированные пользователи могут переводить статьи
Войти Зарегистрироваться
Ссылка сохраняется в буфер обмена
M A Brager
M J Patterson
J F Connolly
Z Nevo

Ключевые слова

абстрактный

Osteogenic growth peptide, a histone H4-related, 14-amino-acid peptide, is an active mediator of local, as well as systemic, osteogenic activity in response to marrow ablation, trauma, and blood loss. In this study, the effect of exogenous osteogenic growth peptide on the healing of femoral fractures in rats was investigated. A fracture at the midshaft of the femur was created in 50 rats. Half of the rats were injected subcutaneously with 25 ng of osteogenic growth peptide per rat per day for the first 7 days after fracture. Radiographs were taken each week, and the diameter of the callus was measured. The femurs of four animals from each group were harvested 1, 2, 3, and 4 weeks after fracture. Two femurs from each group were sectioned for histologic examination, and two were sectioned for measurement of density and mineral content. Marrow was aspirated from the contralateral femurs to establish adhering cell cultures, which were examined for osteogenicity. At 2 weeks, a large increase in mitogenicity and osteogenicity was seen in the marrow-derived cultures from the rats treated with osteogenic growth peptide; this increase was sustained through 4 weeks. Extraction of RNA from the contralateral marrow (systemic expression) and callus (local expression) for amplification with reverse transcription-polymerase chain reaction revealed greater systemic expression of transforming growth factors beta1, beta2, and beta3, fibroblast growth factor-2, insulin-like growth factor-1, and aggrecan throughout the 4 weeks after fracture, whereas types IIA and IIB collagen, link protein, and fibroblast growth factor receptor-3 had a greater local expression. The specimens treated with osteogenic growth peptide had a stronger expression of transforming growth factor-beta1, both locally and systemically. The average diameter of the callus was greater for the treated rats at all time intervals, and peak diameters were 7.58 mm at 3 weeks for the treated rats and 6.64 mm at 2 weeks and 6.63 mm at 3 weeks for the controls. Histological study revealed an earlier organization and faster healing of the treated fractures, as evidenced by the larger, earlier appearance of cartilaginous soft callus and the more rapid organization of bridging trabecular bone. No statistical significance was obtained when these comparisons were made between the groups. These results suggest that osteogenic growth peptide can be used to promote earlier proliferation and differentiation of osteogenic cells in marrow and bone-repair callus, possibly through its effect on the transforming growth factor-beta family.

Присоединяйтесь к нашей
странице facebook

Самая полная база данных о лекарственных травах, подтвержденная наукой

  • Работает на 55 языках
  • Травяные лекарства, подтвержденные наукой
  • Распознавание трав по изображению
  • Интерактивная карта GPS - отметьте травы на месте (скоро)
  • Прочтите научные публикации, связанные с вашим поиском
  • Ищите лекарственные травы по их действию
  • Организуйте свои интересы и будьте в курсе новостей исследований, клинических испытаний и патентов

Введите симптом или заболевание и прочтите о травах, которые могут помочь, введите лекарство и узнайте о болезнях и симптомах, против которых оно применяется.
* Вся информация основана на опубликованных научных исследованиях.

Google Play badgeApp Store badge