Slovak
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Mass Spectrometry 2007-Apr

LC-MS ion maps for the characterization of aniline derivatives of fatty acids and triglycerides in laboratory-denatured rapeseed oil.

Články môžu prekladať iba registrovaní používatelia
Prihlásiť Registrácia
Odkaz sa uloží do schránky
Natalia Reig
Rosa E Calaf
Angel Messeguer
Anna Morató
Jordi Escabros
Emilio Gelpí
Joaquín Abian

Kľúčové slová

Abstrakt

In 1981 Spain went through a unique epidemic associated with a food-borne vector, affecting more than 20,000 people with over 800 deaths, which came to be known as the Toxic Oil Syndrome (TOS). Early epidemiological studies showed a link between this illness and the ingestion of rapeseed oil denatured with 2% aniline. This oil, originally aniline-denatured for industrial use, was fraudulently processed in an attempt to remove free aniline, and marketed as edible oil. Fatty acid anilides (FAA), monoesters and diesters of 3-(N-phenylamino)-1,2-propanediol (PAP) are present in oil samples as they arise in the refining process from reactions of aniline with constituent fatty acids and triglycerides of the oil matrix and are the only extraneous compounds found in these samples. To expand the search for the causative agents in TOS-associated oils and to look for new aniline-related compounds, an exhaustive characterization of laboratory-processed oils was undertaken. These oils, in the presence of aniline doped with 14C labelled aniline, were submitted to the laboratory conditions required for the generation of PAPs and FAAs. Laboratory-generated oil samples were submitted to a liquid-liquid extraction procedure to remove the unreacted aniline. The extract was processed by double solid-phase extraction to improve detection limits for minor amine-containing compounds in oils. The extracts enriched in aniline derivatives were submitted to on-line HPLC-UV-APCI-MS. Using two-dimensional ion maps, the components of several families of derivatives were readily identified. Additionally, the extracts were also fractionated by HPLC-UV and the fractions were analyzed by HPLC-APCI-MS/MS to obtain structural information. Standards of some of these compounds were synthesized and analyzed to confirm the results. A total of 115 aniline derivatives from 9 aniline-related families were identified in these oil samples. These included fatty acid anilides and an extensive array of phenylaminopropanediol esters distributed in eight major compound classes.

Pripojte sa k našej
facebookovej stránke

Najkompletnejšia databáza liečivých bylín podporovaná vedou

  • Pracuje v 55 jazykoch
  • Bylinné lieky podporené vedou
  • Rozpoznávanie bylín podľa obrázka
  • Interaktívna GPS mapa - označte byliny na mieste (už čoskoro)
  • Prečítajte si vedecké publikácie týkajúce sa vášho hľadania
  • Vyhľadajte liečivé byliny podľa ich účinkov
  • Usporiadajte svoje záujmy a držte krok s novinkami, klinickými skúškami a patentmi

Zadajte príznak alebo chorobu a prečítajte si o bylinách, ktoré by vám mohli pomôcť, napíšte bylinu a pozrite sa na choroby a príznaky, proti ktorým sa používa.
* Všetky informácie sú založené na publikovanom vedeckom výskume

Google Play badgeApp Store badge