Slovenian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology and Biochemistry 2016-Mar

Adaptive flexibility of enzymatic antioxidants SOD, APX and CAT to high light stress: The clonal perennial monocot Iris pumila as a study case.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Povezava se shrani v odložišče
Ana Vuleta
Sanja Manitašević Jovanović
Branka Tucić

Ključne besede

Povzetek

High solar radiation has been recognized as one of the main causes of the overproduction of reactive oxygen species (ROS) and oxidative stress in plants. To remove the excess of ROS, plants use different antioxidants and tune their activity and/or isoform number as required for given light conditions. In this study, the adaptiveness of light-induced variation in the activities and isoform patterns of key enzymatic antioxidants SOD, APX and CAT was tested in leaves of Iris pumila clonal plants from two natural populations inhabiting a sun exposed dune site and a forest understory, using a reciprocal-transplant experiment. At the exposed habitat, the mean enzymatic activity of total SODs was significantly greater than that in the shaded one, while the amount of the mitochondrial MnSOD was notably higher compared to the plastidic Cu/ZnSOD. However, the number of Cu/ZnSOD isoforms was greater in the forest understory relative to the exposed site (three vs. two, respectively). An inverse relationship recorded between the quantities of MnSOD and Cu/ZnSOD in alternative light habitats might indicate that the two enzymes compensate each other in maintaining intracellular ROS and redox balance. The adaptive population differentiation in APX activity was exclusively recorded in the open habitat, which indicated that the synergistic effect of high light and temperature stress could be the principal selective factor, rather than high light alone. The enzymatic activity of CAT was similar between the two populations, implicating APX as the primary H2O2 scavenger in the I. pumila leaves exposed to high light intensity.

Pridružite se naši
facebook strani

Najbolj popolna baza zdravilnih zelišč, podprta z znanostjo

  • Deluje v 55 jezikih
  • Zeliščna zdravila, podprta z znanostjo
  • Prepoznavanje zelišč po sliki
  • Interaktivni GPS zemljevid - označite zelišča na lokaciji (kmalu)
  • Preberite znanstvene publikacije, povezane z vašim iskanjem
  • Iščite zdravilna zelišča po njihovih učinkih
  • Organizirajte svoje interese in bodite na tekočem z raziskavami novic, kliničnimi preskušanji in patenti

Vnesite simptom ali bolezen in preberite o zeliščih, ki bi lahko pomagala, vnesite zelišče in si oglejte bolezni in simptome, proti katerim se uporablja.
* Vse informacije temeljijo na objavljenih znanstvenih raziskavah

Google Play badgeApp Store badge