Slovenian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology and Biochemistry 2013-Sep

Antioxidant and photosystem II responses contribute to explain the drought-heat contrasting tolerance of two forage legumes.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Povezava se shrani v odložišče
Santiago Signorelli
Esteban Casaretto
Martha Sainz
Pedro Díaz
Jorge Monza
Omar Borsani

Ključne besede

Povzetek

Identification of metabolic targets of environmental stress factors is critical to improve the stress tolerance of plants. Studying the biochemical and physiological responses of plants with different capacities to deal with stress is a valid approach to reach this objective. Lotus corniculatus (lotus) and Trifolium pratense (clover) are legumes with contrasting summer stress tolerances. In stress conditions, which are defined as drought, heat or a combination of both, we found that differential biochemical responses of leaves explain these behaviours. Lotus and clover showed differences in water loss control, proline accumulation and antioxidant enzymatic capacity. Drought and/or heat stress induced a large accumulation of proline in the tolerant species (lotus), whereas heat stress did not cause proline accumulation in the sensitive species (clover). In lotus, Mn-SOD and Fe-SOD were induced by drought, but in clover, the SOD-isoform profile was not affected by stress. Moreover, lotus has more SOD-isoforms and a higher total SOD activity than clover. The functionality and electrophoretic profile of photosystem II (PSII) proteins under stress also exhibited differences between the two species. In lotus, PSII activity was drastically affected by combined stress and, interestingly, was correlated with D2 protein degradation. Possible implications of this event as an adaption mechanism in tolerant species are discussed. We conclude that the stress-tolerant capability of lotus is related to its ability to respond to oxidative damage and adaption of the photosynthetic machinery. This reveals that these two aspects should be included in the evaluation of the tolerance of species to stress conditions.

Pridružite se naši
facebook strani

Najbolj popolna baza zdravilnih zelišč, podprta z znanostjo

  • Deluje v 55 jezikih
  • Zeliščna zdravila, podprta z znanostjo
  • Prepoznavanje zelišč po sliki
  • Interaktivni GPS zemljevid - označite zelišča na lokaciji (kmalu)
  • Preberite znanstvene publikacije, povezane z vašim iskanjem
  • Iščite zdravilna zelišča po njihovih učinkih
  • Organizirajte svoje interese in bodite na tekočem z raziskavami novic, kliničnimi preskušanji in patenti

Vnesite simptom ali bolezen in preberite o zeliščih, ki bi lahko pomagala, vnesite zelišče in si oglejte bolezni in simptome, proti katerim se uporablja.
* Vse informacije temeljijo na objavljenih znanstvenih raziskavah

Google Play badgeApp Store badge