Slovenian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Archives of Biochemistry and Biophysics 1990-Jun

Carbohydrate-binding specificity of the daffodil (Narcissus pseudonarcissus) and amaryllis (Hippeastrum hybr.) bulb lectins.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Povezava se shrani v odložišče
H Kaku
E J Van Damme
W J Peumans
I J Goldstein

Ključne besede

Povzetek

The carbohydrate binding specificity of the daffodil (Narcissus pseudonarcissus; NPA) and amaryllis (Hippeastrum hybr.; HHA) lectins, isolated from extracts of their bulbs by affinity chromatography on immobilized mannose, was studied by quantitative precipitation, sugar hapten inhibition, and affinity chromatography on the immobilized lectins. These lectins gave strong precipitation reactions with several yeast mannans, but did not precipitate with alpha-D-glucans (e.g., dextrans and glycogen). Interestingly, both lectins reacted strongly with yeast galactomannans having multiple nonreducing terminal alpha-D-galactosyl groups, a synthetic linear alpha-1,6-mannan, and an alpha-1,3-mannan (DP = 30). Treatment of the linear alpha-1,3-mannan with periodate, resulting in oxidation of the terminal, nonreducing mannosyl group, did not reduce its reactivity with NPA or HHA. Taken together, these observations suggest that NPA and HHA react not only with terminal but also with internal alpha-D-mannosyl residues. Sugar hapten inhibition studies showed these lectins to possess the greatest specific activity for alpha-D-mannosyl units whereas D-Glc and D-GlcNAc did not inhibit either lectin precipitation system. Of the oligosaccharides tested, the best inhibitor of NPA interaction was alpha-1,6-linked mannotriose, which was twice as good an inhibitor as Man alpha 1,6Man alpha-O-Me and 10 times better than methyl alpha-D-mannoside. On the other hand, oligosaccharides containing either 1,3- or 1,6-linked mannosyl units were good inhibitors of the HHA-mannan precipitation system (6- to 20-fold more active than D-Man). These results indicate that both lectins appear to possess an extended binding site(s) complementary to at least three 1,6-linked alpha-mannosyl units. Various glycosylasparagine glycopeptides which contain alpha-1,6-Man units were retarded on the immobilized NPA column. On the other hand, those containing either alpha-1,3- or alpha-1,6-mannosyl residues were retarded on the immobilized HHA column; Man5-GlcNAc2-Asn [containing two Man alpha 1,3(Man alpha 1,6) units] bound to the HHA column. On the contrary, glycopeptides with hybrid type glycan chains were not retarded on either column. These two new lectins which differ in their fine sugar binding specificity from each other, and also from the snowdrop lectin, should prove to be useful probes for the detection and preliminary characterization of glycoconjugates on cell surfaces and in solution.

Pridružite se naši
facebook strani

Najbolj popolna baza zdravilnih zelišč, podprta z znanostjo

  • Deluje v 55 jezikih
  • Zeliščna zdravila, podprta z znanostjo
  • Prepoznavanje zelišč po sliki
  • Interaktivni GPS zemljevid - označite zelišča na lokaciji (kmalu)
  • Preberite znanstvene publikacije, povezane z vašim iskanjem
  • Iščite zdravilna zelišča po njihovih učinkih
  • Organizirajte svoje interese in bodite na tekočem z raziskavami novic, kliničnimi preskušanji in patenti

Vnesite simptom ali bolezen in preberite o zeliščih, ki bi lahko pomagala, vnesite zelišče in si oglejte bolezni in simptome, proti katerim se uporablja.
* Vse informacije temeljijo na objavljenih znanstvenih raziskavah

Google Play badgeApp Store badge