Slovenian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BMC Plant Biology 2015-Apr

Comparative transcriptome analysis of latex from rubber tree clone CATAS8-79 and PR107 reveals new cues for the regulation of latex regeneration and duration of latex flow.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Povezava se shrani v odložišče
Jinquan Chao
Yueyi Chen
Shaohua Wu
Wei-Min Tian

Ključne besede

Povzetek

BACKGROUND

Rubber tree (Hevea brasiliensis Muell. Arg.) is the primarily commercial source of natural rubber in the world. Latex regeneration and duration of latex flow after tapping are the two factors that determine rubber yield of rubber tree, and exhibit a huge variation between rubber tree clones CATAS8-79 and PR107.

RESULTS

To dissect the molecular mechanism for the regulation of latex regeneration and duration of latex flow, we sequenced and comparatively analyzed latex of rubber tree clone CATAS8-79 and PR107 at transriptome level. More than 26 million clean reads were generated in each pool and 51,829 all-unigenes were totally assembled. A total of 6,726 unigenes with differential expression patterns were detected between CATAS8-79 and PR107. Functional analysis showed that genes related to mass of categories were differentially enriched between the two clones. Expression pattern of genes which were involved in latex regeneration and duration of latex flow upon successive tapping was analyzed by quantitative PCR. Several genes related to rubber biosynthesis, cellulose and lignin biosynthesis and rubber particle aggregation were differentially expressed between CATAS8-79 and PR107.

CONCLUSIONS

This is the first report about probing latex regeneration and duration of latex flow by comparative transcriptome analysis. Among all the suggested factors, it is more important that the level of endogenous jasmonates, carbohydrate metabolism, hydroxymethylglutaryl-CoA reductase (HMGR) and Hevea rubber transferase (HRT) in mevalonate (MVA) parthway for latex regeneration while the level of endogenous ethylene (ETH), lignin content of laticifer cell wall, antioxidants and glucanases for the duration of latex flow. These data will provide new cues for understanding the molecular mechanism for the regulation of latex regeneration and duration of latex flow in rubber tree.

Pridružite se naši
facebook strani

Najbolj popolna baza zdravilnih zelišč, podprta z znanostjo

  • Deluje v 55 jezikih
  • Zeliščna zdravila, podprta z znanostjo
  • Prepoznavanje zelišč po sliki
  • Interaktivni GPS zemljevid - označite zelišča na lokaciji (kmalu)
  • Preberite znanstvene publikacije, povezane z vašim iskanjem
  • Iščite zdravilna zelišča po njihovih učinkih
  • Organizirajte svoje interese in bodite na tekočem z raziskavami novic, kliničnimi preskušanji in patenti

Vnesite simptom ali bolezen in preberite o zeliščih, ki bi lahko pomagala, vnesite zelišče in si oglejte bolezni in simptome, proti katerim se uporablja.
* Vse informacije temeljijo na objavljenih znanstvenih raziskavah

Google Play badgeApp Store badge