Slovenian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biological Chemistry 2003-Feb

Diverse enzymatic specificities of digestive proteases, 'intestains', enable Colorado potato beetle larvae to counteract the potato defence mechanism.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Povezava se shrani v odložišče
Kristina Gruden
Tatjana Popovic
Nina Cimerman
Igor Krizaj
Borut Strukelj

Ključne besede

Povzetek

In response to insect attack, high levels of proteinase inhibitors are synthesised in potato leaves. This can cause inefficient protein digestion in insects, leading to reduced growth, delayed development and lower fecundity. It has been suggested that Colorado potato beetle overcomes this defence mechanism by inducing the production of a set of cysteine proteases that are resistant to potato proteinase inhibitors. Experiments with gut extracts showed that these proteases have unusual inhibition profiles as they are not inhibited by most of the cystatins but are strongly inhibited by thyropins. In this study we have isolated three cysteine proteases from adapted guts of Colorado potato beetle larvae, named intestains 1, 2 and 3, the first cysteine proteases known to be involved in extracellular protein digestion. The N-terminal sequences suggest their classification into the papain family. Intestains differ in substrate specificities and inhibitory profiles. Their substrate specificities suggest that intestains 1 and 2 are general digestive enzymes, while intestain 3 has a more specific function. The inhibitory profile of intestain 1 is similar to that of proteases of the papain family. However, the Ki values for the interaction of intestain 2 with the same set of inhibitors are several hundred fold higher, which would enable the enzyme to circumvent the potato defence mechanism characterised by high concentrations of protease inhibitors in attacked potato leaves. A further, different strategy of the Colorado potato beetle to avoid potato defence is exhibited by intestain 3, which is able to cleave off the N-terminus of model cystatin and thus inactivate the inhibitor. These results suggest that the Colorado potato beetle combines different strategies to counteract plant defence mechanisms.

Pridružite se naši
facebook strani

Najbolj popolna baza zdravilnih zelišč, podprta z znanostjo

  • Deluje v 55 jezikih
  • Zeliščna zdravila, podprta z znanostjo
  • Prepoznavanje zelišč po sliki
  • Interaktivni GPS zemljevid - označite zelišča na lokaciji (kmalu)
  • Preberite znanstvene publikacije, povezane z vašim iskanjem
  • Iščite zdravilna zelišča po njihovih učinkih
  • Organizirajte svoje interese in bodite na tekočem z raziskavami novic, kliničnimi preskušanji in patenti

Vnesite simptom ali bolezen in preberite o zeliščih, ki bi lahko pomagala, vnesite zelišče in si oglejte bolezni in simptome, proti katerim se uporablja.
* Vse informacije temeljijo na objavljenih znanstvenih raziskavah

Google Play badgeApp Store badge