Slovenian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biotechnology Letters 2011-Jun

Ectopic expression of a poplar APETALA3-like gene in tobacco causes early flowering and fast growth.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Povezava se shrani v odložišče
Xinmin An
Meixia Ye
Dongmei Wang
Zeliang Wang
Guanlin Cao
Huiquan Zheng
Zhiyi Zhang

Ključne besede

Povzetek

A MADS-box gene, designated PtAP3, was isolated from a floral bud cDNA library derived from Populus tomentosa. Analysis by multiple alignments of both nucleotide and amino acid sequences, together with phylogenetic analysis, revealed that PtAP3 is an ortholog of Arabidopsis AP3. Analysis of RNA extracts from vegetative and reproductive tissues of P. tomentosa by RT-PCR indicated that PtAP3 is expressed in roots, stems, leaves and vegetative and floral buds. Notably, the expression of PtAP3 fluctuated during floral bud development between September and February with differences between male and female buds. In the former, a gradual down-regulation during this period, interrupted by a slight up-regulation in December, was followed by a sharper up-regulation on February. In developing female floral buds, expression was stable from September to November, sharply up-regulated in December, and then gradually down-regulated until February. The functional role of PtAP3 was investigated in transgenic tobacco plants. Of 25 transformants, nine displayed an earlier flowering phenotype compared with the wild type plants. Furthermore, transgenic tobacco had faster growth and more leaves than untransformed controls. The traits proved to be heritable between the T0 and T1 generations. Our results demonstrate a regulatory role of the PtAP3 gene during plant flowering and growth and suggest that the gene may be an interesting target for genetic modification to induce early flowering in plants.

Pridružite se naši
facebook strani

Najbolj popolna baza zdravilnih zelišč, podprta z znanostjo

  • Deluje v 55 jezikih
  • Zeliščna zdravila, podprta z znanostjo
  • Prepoznavanje zelišč po sliki
  • Interaktivni GPS zemljevid - označite zelišča na lokaciji (kmalu)
  • Preberite znanstvene publikacije, povezane z vašim iskanjem
  • Iščite zdravilna zelišča po njihovih učinkih
  • Organizirajte svoje interese in bodite na tekočem z raziskavami novic, kliničnimi preskušanji in patenti

Vnesite simptom ali bolezen in preberite o zeliščih, ki bi lahko pomagala, vnesite zelišče in si oglejte bolezni in simptome, proti katerim se uporablja.
* Vse informacije temeljijo na objavljenih znanstvenih raziskavah

Google Play badgeApp Store badge