Slovenian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Zhonghua er bi yan hou tou jing wai ke za zhi = Chinese journal of otorhinolaryngology head and neck surgery 2015-Oct

[Effects of acute hypoxia on potassium channels in spiral ganglion cells of SD rats].

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Povezava se shrani v odložišče
Yanping Wang
He Zhu
Ketao Ma
Junqiang Si
Li Li

Ključne besede

Povzetek

OBJECTIVE

The present study was to investigate the effects of acute hypoxia on the electrophysiological properties and outward current of spiral ganglion cell (SGC).

METHODS

SGC of newborn's Sprague Dawley (SD) rats were isolated and digested, primary cultured neurons for 8 h. By perfusion with physical saline solution containing no glucose and low oxygen, SGNs model of acute hypoxia was established. The whole-cell patch clamp recording was used to clarify the effect of hypoxia on the outward currents of SGC.

RESULTS

The outward current of SGC showed characteristics of outward rectification, which contained two major components, one sensitive to the big conductance Ca²⁺-activated K⁺ channels (BKCa) which blocked by TEA, and the other could be suppressed by the KV channel blocker 4-AP. When holding at -60 mV, acute hypoxia increased the outward current of SGC in a voltage-dependent manner, which mainly increased the amplitude of the current activated by the votage ranged from 0 mV to +60 mV, and increased the amplitude of outward current from (1 160.0 ± 129.1) pA to (2 428 ± 239.3) pA (n = 9, P < 0.01) at holding potential of -60mV. By perfusion with the Potassium channel blocker TEA or 4-AP, the former could significantly reduced the increasing of outward currents induced by hypoxia on the SGC, the latter had no significant effect on the outward current increased by the hypoxia.

CONCLUSIONS

These results suggest that acute hypoxia causes neuron hyperpolarization possibly by activating big conductance BKCa of the SGC. When the BKca channels are activated, K⁺ effluxes increase, which induces cell membrane hyperpolarization, and decreases cell excitability, which may affect the conducting function of SGC.

Pridružite se naši
facebook strani

Najbolj popolna baza zdravilnih zelišč, podprta z znanostjo

  • Deluje v 55 jezikih
  • Zeliščna zdravila, podprta z znanostjo
  • Prepoznavanje zelišč po sliki
  • Interaktivni GPS zemljevid - označite zelišča na lokaciji (kmalu)
  • Preberite znanstvene publikacije, povezane z vašim iskanjem
  • Iščite zdravilna zelišča po njihovih učinkih
  • Organizirajte svoje interese in bodite na tekočem z raziskavami novic, kliničnimi preskušanji in patenti

Vnesite simptom ali bolezen in preberite o zeliščih, ki bi lahko pomagala, vnesite zelišče in si oglejte bolezni in simptome, proti katerim se uporablja.
* Vse informacije temeljijo na objavljenih znanstvenih raziskavah

Google Play badgeApp Store badge