Slovenian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Aquatic Toxicology 2018-Jul

Effects of microcystin-LR on the tissue growth and physiological responses of the aquatic plant Iris pseudacorus L.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Povezava se shrani v odložišče
Naiyu Wang
Can Wang

Ključne besede

Povzetek

The release of cyanobacterial toxins during algal bloom has adverse effects on aquatic plants and animals. This study aimed to understand the toxic effects and mechanism of microcystin-LR (MC-LR) on the seedling growth and physiological responses of Iris pseudacorus L. (calamus). After a one-month exposure experiment, the growth and development of the calamus leaves were significantly inhibited, and this inhibitory effect was verified to be concentration dependent. Furthermore, the cell membrane system was damaged, and the photosynthesis was also adversely affected by MC-LR. The relative conductivity of the leaves increased from 10.96% to 97.51%, and the total chlorophyll content decreased from 0.89 mg/g to 0.09 mg/g. Notably, the behavior of the roots in the presence of MC-LR was different from that of the leaves. The seedlings needed to absorb more nutrients to maintain the normal growth at low-toxin concentrations, but the high concentration of (over 250 μg/L) MC-LR exceeded the tolerance of plants and inhibited the growth of roots. In addition, MC-LR led to an excessive accumulation of H2O2, and the seedlings enhanced the activities of catalase, peroxidase, and superoxide dismutase to resist oxidative stress. The presence of MC-LR also affected the capacity of the plants to absorb nitrogen and phosphorus. The removal efficiency of NO3--N, the main source of nitrogen, was 63.53% in the presence of 100 μg/L MC-LR. As a result, the pH increased, and the growth of plants was indirectly inhibited. Therefore, the presence of MC-LR could affect the purification efficiency of calamus in eutrophic water. This study provides theoretical support for the selection of plants in the eutrophic water.

Pridružite se naši
facebook strani

Najbolj popolna baza zdravilnih zelišč, podprta z znanostjo

  • Deluje v 55 jezikih
  • Zeliščna zdravila, podprta z znanostjo
  • Prepoznavanje zelišč po sliki
  • Interaktivni GPS zemljevid - označite zelišča na lokaciji (kmalu)
  • Preberite znanstvene publikacije, povezane z vašim iskanjem
  • Iščite zdravilna zelišča po njihovih učinkih
  • Organizirajte svoje interese in bodite na tekočem z raziskavami novic, kliničnimi preskušanji in patenti

Vnesite simptom ali bolezen in preberite o zeliščih, ki bi lahko pomagala, vnesite zelišče in si oglejte bolezni in simptome, proti katerim se uporablja.
* Vse informacije temeljijo na objavljenih znanstvenih raziskavah

Google Play badgeApp Store badge